Skip to main content
Log in

Low-Noise Cooled Planar Schottky Diode Receivers for Ground-Based Spectral Ozone Measurements at 142 GHz

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Two new low-noise cooled receivers based on planar Schottky diode mixers were designed and built for the Lebedev Physics Institute (LPI) spectrometer for ground-based measurements of the atmospheric ozone spectral line of 142.175 GHz central frequency. The receivers differ in the intermediate frequency (IF) bands, of around 3.7 and 1.5 GHz. Review description of the spectrometer equipped with the 3.7–GHz IF receiver is given, and its performance is compared with other millimeter-wave ground-based ozone spectrometers. Special attention was paid to design of the input Gaussian optics and the mixers. Techniques of laboratory tests of the receivers and results of the tests through all 2–mm wavelength range are considered and discussed. SSB mixer noise temperature of 460±60 K was obtained at 151 GHz for room temperature mixer, and the value of 180±30 K was measured at 134 GHz under cooling to 85 K in liquid nitrogen cryostat. SSB mixer conversion losses were less than 5.5 dB in both the cases. SSB noise temperature of the spectrometer is less than 1500 K without cooling and less than 700 K at cryogenic operation at 142 GHz. This provides sensitivity of about 0.2 and 0.1 K for the narrowest spectral channel width of 0.1 MHz and signal integration time of 1 hour. Using the optimized spectrum analyzers delivers data on high-accuracy retrieval of the ozone vertical profile in the atmosphere at altitudes about from 15 to 75 km. Examples of the ozone observation data are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atmospheric remote sensing by microwave radiometry, Ed. M.A. Janssen, J. Wiley & Sons, New York, 1993.

    Google Scholar 

  2. S.V. Solomonov, E.P. Kropotkina, A.N. Lukin, N.I. Ponomarenko, S.B. Rozanov, and J. Elldér, “Some features of the vertical ozone distribution from millimeter wave measurements at Pushchino and Onsala observatories,” J. Atmos. Terr. Phys. 56(1), 9–15 (1994).

    Google Scholar 

  3. A. Parrish, “Millimeter-wave remote sensing of ozone and trace constituents in the stratosphere,” Proc. IEEE 82(12), 1915–1929 (1994).

    Google Scholar 

  4. J. de La Noë, “Remote sensing of stratospheric ozone by groundbased microwave radiometers,” Dig. IGARSS`94, Pasadena, CA, Aug. 8–12, 1994.

  5. A. Winnberg, J. Askne, R.S. Booth, J. Elldér, and P. Eriksson, Report to the ESMOS Contract EV5V-CT91–0018, 1993.

  6. O. Koistinen, H. Valmu, A. Räisänen, V. Vdovin, Yu. Dryagin, and I. Lapkin, “A 110 GHz ozone radiometer with a cryogenically cooled planar Schottky mixer,” IEEE Trans. Microwave Theory Techn. MTT-41(12), 2232–2236 (1993).

    Google Scholar 

  7. A.F. Andriyanov, O.N. Borisov, S.Yu. Dryagin, T.L. Erukhimova, L.M. Koukin, Yu.Yu. Kulikov, I.V. Kuznetsov, L.V. Lubyako, O.S. Mocheneva, P.L. Nikiforov, V.G. Ryskin, E.V. Suvorov, V.N. Shanin, A.A. Shvetsov, and V.M. Yurkov, “Millimeter sounding of stratospheric ozone in high latitudes,” Proc. 19th Ann. Europ. Meeting on Atmos. Studies by Opt. Methods, Kiruna, Aug. 10–14, 1992, IRF Sci. Rep. No.209, 42–48, Kiruna, 1993.

  8. K. Kawabata, Y. Fukui, H. Ogawa, A. Mizuno, M. Fujimoto, S. Nozawa, H. Nakane, H. Hoko, and Ji Yang, “Observations of ozone mixing ratio by Nagoya 4 m millimeterwave radiotetescope,” J. Geomag. Geoelect. 44, 1085–1096 (1992).

    Google Scholar 

  9. N. Kämpfer, P. Bodenmann, and R. Peter, “Groundbased microwave radiometery of ozone,” SPIE, 1491, 314–322 (1991).

    Google Scholar 

  10. Dr. B. Sandor, private communication, 1996.

  11. Scientific assessment of ozone depletion: 1994, World Meteorological Organization. Global Ozone Research and Monitoring Project-Report No.37, WMO, Geneva, 1995.

  12. J.M. Payne, J.W. Lamb, J.G. Cochran, and N. Bailey, “A new generation of SIS receivers for millimeter-wave radio astronomy,” Proc. IEEE, 82(5), 811–823 (1994).

    Google Scholar 

  13. C.R. Predmore, A.V. Räisänen, N.R. Erickson, P.F. Goldsmith, and J.L.R. Marrero, “A broad-band ultra-low-noise Schottky diode mixer receiver from 80 to 115 GHz,” IEEE Trans. Microwave Theory Techn. MTT-32(5), 498–507 (1984).

    Google Scholar 

  14. N.R. Erickson, “A very low-noise single sideband receiver for 200–260 GHz,” IEEE Trans. Microwave Theory Techn. MTT-33(11), 1179–1188 (1985).

    Google Scholar 

  15. J.W. Archer and M.T. Faber, “A very low-noise receiver for 80–120 GHz,” Int. J. IR and MM Waves 5(8), 1069–1081 (1984).

    Google Scholar 

  16. E.L. Kollberg and H.H.G. Zirath, “A cryogenic millimeter-wave Schottky-diode mixer,” IEEE Trans. Microwave Theory Techn. MTT-31(2), 230–235 (1983).

    Google Scholar 

  17. A.A. Krasilnikov, Yu.Yu. Kulikov, A.B. Mazur, V.G. Ryskin, N.V. Serov, L.I. Fedoseev, and A.A. Shvetsov, “Microwave observations of ozone in the upper atmosphere using two-beam techniques,” Abstr. XVIIIth Russian Conf. on Propagation of Radio Waves, St.-Petersburg, Sept. 17–19, 1996, Vol.1, 102–103, Institute of Radio Engineering and Electronics, Moscow, 1996.

    Google Scholar 

  18. M. Boheim, L.-P. Schmidt, J. Ritter, V. Brancovic, R. Beyer, F. Arndt, U. Klein, K. Künzi, G. Schwaab, and T.W. Crowe, “A new 140 GHz planar diode finline mixer for radiometer applications,” Proc 24th Europ. Microwave Conf., Cannes, Sept. 5–8, 1994, Vol. 1, 664–669, Nexus, Cannes, 1994.

    Google Scholar 

  19. T.W. Crowe, R.J. Mattauch, H.P. Röser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications,” Proc. IEEE 80(11), 1827–1841 (1992).

    Google Scholar 

  20. D.G. Garfield, R.J. Mattauch, and S. Weinreb, “RF performance of a novel planar millimeter-wave diode incorporating an etched surface channel,” IEEE Trans. Microwave Theory Techn. MTT-39(1), 1–5 (1991).

    Google Scholar 

  21. V.G. Bozhkov, V.F. Vdovin, V.N. Voronov, V.A. Genneberg, Yu.A. Dryagin, I.V. Kuznetsov, L.M. Koukin, K.I. Kurkan, and L.I. Fedoseev, “The investigation of solid balanced mixer for nearmillimeter waveband,” Rus. Raiotekhn. i Electron. 37(4), 736–743 (1992).

    Google Scholar 

  22. V.G. Bozhkov, V.A. Genneberg, V.N. Romanovskaya, L.I. Fedoseev, A.D. Friger, and A.A. Shvetsov, “Investigation of monoithic balanced mixer for 1.5 mm range,” Rus. Raiotekhn. i Electron. 41(7), 876–881 (1996).

    Google Scholar 

  23. S.B. Rozanov, ”Low-noise beam lead Schottky diode mixers for 2 mm waveband,” Rus. Radiotekhn. i Electron. 41(3), 362–369 (1996).

    Google Scholar 

  24. E.P. Kropotkina and S.V. Solomonov, “Submillimeter radiation spectra of the Earth's atmosphere,” Rus. Issledovaniya Zemli iz kosmosa (1), 81–88 (1988).

  25. K.P. Gaikovich, “Tikhonov's method of the ground-based retrieval of the ozone profile,” Dig. IGARSS `94, Pasadena, CA, Aug. 8–12, 1994, Vol.4, 1901–1903, 1994.

    Google Scholar 

  26. P.F. Goldsmith, “Quasi-optical techniques,” Proc. IEEE 80(11), 1729–1747 (1992).

    Google Scholar 

  27. The cryostat was designed by Dr. V.F. Troitsky of the LPI Cryogenic Department.

  28. V.A. Gusev, E.P. Kropotkina, S.V. Logvinenko, A.N. Lukin, P.L. Nikiforov, S.B. Rozanov, I.I. Sobel'man, S.V. Solomonov, R.L. Sorochenko, and A.A. Shtanjuk, “Ground-based heterodyne spectrometer for ozone observations at 2–mm wavelength”, submitted to Rus. Radiotekhn. i Electron., 1997.

  29. S.B. Rozanov, Yu.M. Platonov, A.N. Lukin, and S.V. Solomonov, “Cooled quasioptical loads for near millimeter wave receivers,” submitted to Rus. Raiotekhn. i Electron., 1997.

  30. J. Mees, S. Crewell, H. Nett, G. de Lange, H. van de Stadt, J.J. Kuipers, and R.A. Panhuyzen, “ASUR-an airborne SIS receiver for atmospheric measurements of trace gases at 625 to 760 GHz,” IEEE Trans. Microwave Theory Techn. MTT-43(11), 2543–2548 (1995).

    Google Scholar 

  31. H. Wang, R. Lai, D.C.W. Lo, D.C. Streit, P.H. Liu, R.M. Dia, M.W. Pospieszalski, and J. Berenz, “A 140–GHz monolithic low noise amplifier,” IEEE Microwave Guided Wave Lett. 5(5), 150–152 (1995).

    Google Scholar 

  32. M.N. Afsar and K.J. Button, ”Millimeter-wave dielectric properties of materials,” Infrared and Millimeter Waves, Ed. K.J. Button, Vol.11, 1–42, Academic Press, New York, 1984.

    Google Scholar 

  33. S.B. Rozanov, “Quasi-optical interferometer with correcting objectives for near millimeter waves,” Rus. Vestnik of Moscow State Techn. Univ. (3), 52–62 (1991).

  34. B.MacA. Thomas, “Design of Corrugated Conical Horns,” IEEE Trans. Antennas Propag. AP-26(2), 367–372 (1978).

    Google Scholar 

  35. D.A. Bathker, ”A stepped mode transducer using homogeneous waveguides,” IEEE Trans. Microwave Theory Techn. MTT-15(2), 128–130 (1967).

    Google Scholar 

  36. R.W. Wylde and D.H. Martin, “Gaussian beam-mode analysis and phase-center of corrugated feed horns,” IEEE Trans. Microwave Theory Techn. MTT-41(10), 1691–1699 (1993).

    Google Scholar 

  37. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1968.

    Google Scholar 

  38. Y. Dryagin, I. Lapkin, V. Vdovin, I. Zinchenko, K. Kuittinen, E. Oinaskallio, and J. Peltonen, “Low noise beam-lead diode mixer for the 3 mm radio astronomical receiver at the Metsähovi Radio Research Station,” Experim. Astron. 5, 279–287 (1994).

    Google Scholar 

  39. S.B. Rozanov, “A beam-lead diode mixer for 2 mm waveband,” Proc. Int. Symp. on Physics and Engineering of MM and subMM waves, Kharkov, June 7–10, 1994, Vol.III, 443–446, Institute of Radiophysics and Electronics, Kharkov, 1994.

    Google Scholar 

  40. Institute of Semiconductors, 634042, Tomsk, Krasnoarmeyskaya st. 99–a, Russia.

  41. P.H. Siegel, D.W. Peterson, and A.R. Kerr, “Design and analysis of the channel waveguide transformer,” IEEE Trans. Microwave Theory Techn. MTT-31(6), 473–484 (1983).

    Google Scholar 

  42. Semiconductor devices. Microwave diodes. Reference book, Ed. B.A. Nalivaiko, RASKO, Tomsk, Russia, 1992.

    Google Scholar 

  43. P.H. Siegel and A.R. Kerr, “The measured and computed performance of a 140–220 GHz Schottky diode mixer,” IEEE Trans. Microwave Theory Techn. MTT-32(12), 1579–1590 (1984).

    Google Scholar 

  44. S.V. Solomonov, E.P. Kropotkina, A.N. Lukin, and S.B. Rozanov, “Some pecularities of the altitude ozone distribution over Moscow in winter 1996 from millimeter-wave observations at the LPI,” Bulletin of the LPI (Kratkie Soobshcheniya po Fizike), (1–2), 75–82 (1997).

  45. The ozone vertical profiles were retrieved by Dr. E.P.Kropotkina of the LPI.

  46. M. Bittner and D. Offermann, CRISTA/MAHRSI — Campaign Handbook, University of Wuppertal, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozanov, S.B., Lukin, A.N. & Solomonov, S.V. Low-Noise Cooled Planar Schottky Diode Receivers for Ground-Based Spectral Ozone Measurements at 142 GHz. International Journal of Infrared and Millimeter Waves 19, 195–222 (1998). https://doi.org/10.1023/A:1022567523647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022567523647

Navigation