Skip to main content
Log in

Effects of Endocrine Modulators on Sex Differentiation in Birds

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This mini-review focuses on sexual differentiation of the reproductive organs and the brain in birds and the effects of endocrine modulators on these processes. Sex determination in birds is genetically controlled, but the genetic events implicated are largely unknown. Female birds have one Z and one W sex chromosome, while males have two Z sex chromosomes. It is not clear whether it is the presence of the W chromosome in females, the double dose of the Z chromosome in males vis-à-vis females, or both of these characteristics that are crucial for the determination of sex in birds. Oestradiol directs sexual differentiation in birds during critical periods of development. Consequently, exogenous compounds that interfere with the endogenous oestrogen balance can disrupt sexual differentiation of the reproductive organs and the brain. Therefore, sexual differentiation in birds provides a good model for studying the effects of endocrine modulators at various biological levels from gene expression to behaviour. Some compounds known to be present in the environment can alter endocrine function and have adverse effects when administered during development, resulting in alterations in gonads, accessory sexual organs, and behaviour. Data reviewed in this paper are mostly from laboratory studies on endocrine modulators with oestrogenic activity, whereas evidence for adverse effects of pollutants on sexual differentiation in avian wildlife is scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins, E.K. (1975). Hormonal basis of sexual differentiation in the Japanese quail. J. Comp. Physiol. Psychol. 89, 61-71.

    Google Scholar 

  • Adkins, E.K. and Adler, N.T. (1972). Hormonal control of behavior in the Japanese quail. J. Comp. Physiol. Psychol. 81, 27-36.

    Google Scholar 

  • Adkins-Regan, E. and Wade, J. (2001). Masculinized sexual partner preference in female zebra finches with sex-reversed gonads. Hormones Behav. 39, 22-8.

    Google Scholar 

  • Arnold, A.P. (1975). The effects of castration on song development in zebra finches (Poephilia guttata). J. Exp. Zool. 191, 261-78.

    Google Scholar 

  • Arnold, A.P. (1992). Developmental plasticity in neural circuits controlling birdsong: sexual differentiation and the neural basis of learning. J. Neurobiol. 23, 1506-28.

    Google Scholar 

  • Arnold, A.P. (1996). Genetically triggered sexual differentiation of brain and behavior. Hormones Behav. 30, 495-505.

    Google Scholar 

  • Aste, N., Panzica, G.C., Viglietti-Panzica, C. and Balthazart, J. (1991). Effects of in ovo estradiol benzoate treatments on sexual behavior and size of neurons in the sexually dimorphic medial preoptic nucleus of Japanese quail. Brain Res. Bull. 27, 713-20.

    Google Scholar 

  • Balthazart, J. (1989). Correlation between the sexually dimorphic aromatase of the preoptic area and sexual behavior in quail: effects of neonatal manipulations of the hormonal milieu. Archives Internationales de Physiologie et de Biochimie 97, 465-81.

    Google Scholar 

  • Balthazart, J. and Foidart, A. (1993). Neural bases of behavioral sex differences in quail. In M. Haug et al. (eds) The Development of Sex Differences and Similarities in Behavior, pp. 51-75. Kluwer Academic Publishers.

  • Beach, F.A., Noble, R.G. and Orndoff, R.K. (1969). Effects of perinatal androgen treatment on responses of male rats to gonadal hormones in adulthood. J. Comp. Physiol. Psychol. 68, 490-7.

    Google Scholar 

  • Berg, C., Halldin, K. and Brunström, B. (2001a). Effects of bisphenol A and tetrabromobisphenol A on sex organ development in quail and chicken embryos. Environ. Toxicol. Chem. 20, 2836-40.

    Google Scholar 

  • Berg, C., Halldin, K., Fridolfsson, A.K., Brandt, I. and Brunström, B. (1999). The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ development. Sci. Tot. Environment 233, 57-66.

    Google Scholar 

  • Berg, C., Holm, L., Brandt, I. and Brunström, B. (2001b). Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121, 155-65.

    Google Scholar 

  • Bryan, T.E., Gildersleeve, R.P. and Wiard, R.P. (1989). Exposure of Japanese quail embryos to o,p′-DDT has long-term effects on reproductive behaviors, hematology and feather morphology. Teratology 39, 525-36.

    Google Scholar 

  • Clemens, L.G., Hiroi, M. and Gorski, R.A. (1969). Induction and facilitation of female mating behavior in rats treated neonatally with low doses of testosterone propionate. Endocrinology 84, 1430-8.

    Google Scholar 

  • Clinton, M. and Haines, L.C. (1999). An overview of factors influencing sex determination and gonadal development in birds. Cellular Mole. Life Sci. 55, 876-86.

    Google Scholar 

  • Dawson, A. (2000). Mechanisms of endocrine disruption with particular reference to occurrence in avian wildlife: a review. Ecotoxicology 9, 59-69.

    Google Scholar 

  • Desbrow, C., Routledge, E.J., Brighty, G.C., Sumpter, J.P. and Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol. 32, 1549-58.

    Google Scholar 

  • Elbrecht, A. and Smith, R.G. (1992). Aromatase enzyme activity and sex determination in chickens. Science 255, 467-70.

    Google Scholar 

  • Ellegren, H. (2001). Hens, cocks and avian sex determination. A quest for genes on Z or W? EMBO Reports 2, 192-6.

    Google Scholar 

  • Eroschenko, V.P., Amstislavsky, S.Y., Schwabel, H. and Ingermann, R.L. (2002). Altered behaviors in male mice, male quail, and salamander larvae following early exposures to the estrogenic pesticide methoxychlor. Neurotoxicol. Teratol. 24, 29-36.

    Google Scholar 

  • Foidart, A., Lakaye, B., Grisar, T., Ball, G.F. and Balthazart, J. (1999). Estrogen receptor-beta in quail: cloning, tissue expression and neuroanatomical distribution. J. Neurobiol. 40, 327-42.

    Google Scholar 

  • Fry, D.M. and Toone, C.K. (1981). DDT-induced feminization of gull embryos. Science 213, 922-4.

    Google Scholar 

  • Fry, D.M., Toone, C.K., Speich, S.M. and Peard, R.J. (1987). Sex ratio skew and breeding patterns of gulls: Demographic and toxicological considerations. Stud. Avian Biol. 10, 26-43.

    Google Scholar 

  • Gilbertson, M., Kubiak, T., Ludwig, J. and Fox, G. (1991). Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonial fish-eating birds: similarity to chick-edema disease. J. Toxicol. Environ. Health 33, 455-520.

    Google Scholar 

  • Gildersleeve, R.P., Tilson, H.A. and Mitchell, C.L. (1985). Injection of diethylstilbestrol on the first day of incubation affects morphology of sex glands and reproductive behavior of Japanese quail. Teratology 31, 101-9.

    Google Scholar 

  • Greenwood, A.W. and Blyth, J.S. (1938). Experimental modification of the accessory sexual apparatus in the hen. J. Exp. Physiol. 28, 61-9.

    Google Scholar 

  • Gurney, M. and Konishi, M. (1980). Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science 208, 1380-3.

    Google Scholar 

  • Halldin, K., Berg, C., Bergman, Å., Brandt, I. and Brunström, B. (2001). Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch. Toxicol. 75, 597-603.

    Google Scholar 

  • Halldin, K., Berg, C., Brandt, I. and Brunström, B. (1999). Sexual behavior in Japanese quail as a test end point for endocrine disruption: effects of in ovo exposure to ethinylestradiol and diethylstilbestrol. Environ. Health Perspect. 107, 861-6.

    Google Scholar 

  • Hart, C.A., Hahn, M.E., Nisbet, I.C.T., Moore, M.J., Kennedy, S.W. and Fry, D.M. (1998). Feminization in common terns (Sterna hirundo): relationship to dioxin equivalents and estrogenic compounds. Mar. Environ. Res. 46, 174-5.

    Google Scholar 

  • Hart, C.A., Nisbet, I.C.T., Kennedy, S.W. and Hahn, M.E. (2002). Gonadal feminization and halogenated Environmental contaminants in common terns (Sterna hirundo): evidence that ovotestes in male embryos do not persist to the prefledgling stage. Ecotoxicology 12, 125-140.

    Google Scholar 

  • Holm, L., Berg, C., Brunström, B., Ridderstråle, Y. and Brandt, I. (2001). Disrupted carbonic anhydrase distribution in the avian shell gland following in ovo exposure to estrogen. Arch. Toxicol. 75, 362-8.

    Google Scholar 

  • Hori, T., Asakawa, S., Itoh, Y., Shimizu, N. and Mizuno, S. (2000). Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol. Biol. Cell 11, 3645-60.

    Google Scholar 

  • Hunt, G.L. Jr and Hunt, M.W. (1973). Clutch size, hatching success, and eggshell-thinning in Western Gulls. Condor 75, 483-6.

    Google Scholar 

  • Hunt, G.L. Jr and Hunt, M.W. (1977). Female-female pairing in Western Gulls (Larus occidentalis) in southern California. Science 196, 1466-7.

    Google Scholar 

  • Hutchison, R.E. (1978). Hormonal differentiation of sexual behavior in Japanese quail. Hormones Behav. 11, 363-87.

    Google Scholar 

  • Jurkevich, A., Barth, S.W., Aste, N., Panzica, G. and Grossmann, R. (1996). Intracerebral sex differences in the vasotocin system in birds: possible implication in behavioral and autonomic functions. Hormones Behav. 30, 673-81.

    Google Scholar 

  • Körner, W., Hanf, V., Schuller, W., Bartsch, H., Zwirner, M. and Hagenmaier, H. (1998). Validation and application of a rapid in vitro assay for assessing the estrogenic potency of halogenated phenolic chemicals. Chemosphere 37, 2395-407.

    Google Scholar 

  • Kozelka, A.W. and Gallagher, T.F. (1934). Effect of male hormone extracts, theelin, and theelol on the chick embryo. Proc. Soc. Exp. Biol. Med. 31, 1143-4.

    Google Scholar 

  • Krishnan, A.V., Stathis, P., Permuth, S.F., Tokes, L. and Feldman, D. (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132, 2279-86.

    Google Scholar 

  • Lakaye, B., Foidart, A., Grisar, T. and Balthazart, J. (1998). Partial cloning and distribution of estrogen receptor beta in the avian brain. NeuroReport 9, 2743-8.

    Google Scholar 

  • Larsson, D.G.J., Adolfsson-Erici, M., Parkkonen, J., Pettersson, M., Berg, A.H., Olsson, P.-E. and Förlin, L. (1999). Ethinyloestradiol—an undesired fish contraceptive? Aquat. Toxicol. 45, 91-7.

    Google Scholar 

  • MacLellan, K.N., Bird, D.M., Fry, D.M. and Cowles, J.L. (1996). Reproductive and morphological effects of o,p′-dicofol on two generations of captive American kestrels. Arch. Environ. Contam. Toxicol. 30, 364-72.

    Google Scholar 

  • Millam, J.R., Craig-Veit, C.B., Quaglino, A.E., Erichsen, A.L., Famula, T.R. and Fry, D.M. (2001). Posthatch oral estrogen exposure impairs adult reproductive performance of zebra finch in a sex-specific manner. Hormones Behav. 40, 542-9.

    Google Scholar 

  • Nakabayashi, O., Kikuchi, H., Kikuchi, T. and Mizuno, S. (1998). Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J. Mol. Endocrinol. 20, 193-202.

    Google Scholar 

  • Nanda, I., Shan, Z., Schartl, M., Burt, D.W., Koehler, M., Nothwang, H., Grutzner, F., Paton, I.R., Windsor, D., Dunn, I., Engel, W., Staeheli, P., Mizuno, S., Haaf, T. and Schmid, M. (1999). Three hundred million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics 21, 258-9.

    Google Scholar 

  • Nisbet, I.C.T., Fry, D.M., Hatch, J.J. and Lynn, B. (1996). Feminization of male common tern embryos is not correlated with exposure to specific PCB congeners. Bull. Environ. Contam. Toxicol. 57, 895-901.

    Google Scholar 

  • Nishikimi, H., Kansaku, N., Saito, N., Usami, M., Ohno, Y. and Shimada, K. (2000). Sex differentiation and mRNA expression of P450c17: P450arom and AMH in gonads of the chicken. Mol. Reprod. Dev. 55, 20-30.

    Google Scholar 

  • Nottebohm, F. and Arnold, A.P. (1976). Sexual dimorphism in vocal control areas of the songbird brain. Science 194, 211-13.

    Google Scholar 

  • O'Neill, M., Binder, M., Smith, C., Andrews, J., Reed, K., Smith, M., Millar, C., Lambert, D. and Sinclair, A. (2000). ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev. Genes Evolution 210, 243-9.

    Google Scholar 

  • Oreal, E., Pieau, C., Mattei, M.G., Josso, N., Picard, J.Y., Carre-Eusebe, D. and Magre, S. (1998). Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Developmental Dynamics 212, 522-32.

    Google Scholar 

  • Ottinger, M.A., Abdelnabi, M.A., Henry, P., McGary, S., Thompson, N. and Wu, J.M. (2001). Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail. Hormones Behav. 40, 234-47.

    Google Scholar 

  • Panzica, G.C., Castagna, C., Viglietti-Panzica, C., Russo, C., Tlemcani, O. and Balthazart, J. (1998). Organisational effects of estrogens on brain vasotocin and sexual behavior in quail. J. Neurobiol. 37, 684-99.

    Google Scholar 

  • Panzica, G.C., Viglietti-Panzica, C. and Balthazart, J. (1996). The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Front. Neuroendocrinol. 17, 51-125.

    Google Scholar 

  • Peakall, D.B. and Lincer, J.L. (1996). Do PCBs cause eggshell thinning? Environ. Poll. 91, 127-9.

    Google Scholar 

  • Pedernera, E., Solis, L., Peralta, I. and Velazquez, P.N. (1999). Proliferative and steroidogenic effects of follicle-stimulating hormone during chick embryo gonadal development. General Comp. Endocrinol. 116, 213-20.

    Google Scholar 

  • Quaglino, A.E., Craig-Veit, C.B., Viant, M.R., Erichsen, A.L., Fry, D.M. and Millam, J.R. (2002). Oral estrogen masculinizes female zebra finch song system. Hormones Behav. 41, 236-41.

    Google Scholar 

  • Rissman, E.F., Ascenzi, M., Johnson, P. and Adkins-Regan, E. (1984). Effect of embryonic treatment with oestradiol benzoate on reproductive morphology, ovulation and oviposition and plasma LH concentrations in female quail (Coturnix coturnix japonica). J. Reprod. Fert. 71, 411-17.

    Google Scholar 

  • Scheib, D. (1983). Effects and role of estrogens in avian gonadal differentiation. Differentiation 23(Suppl.), S87-S92.

    Google Scholar 

  • Schlinger, B.A. (1998). Sexual differentiation of avian brain and behavior: current views on gonadal hormone-dependent and independent mechanisms. Annu. Rev. Physiol. 60, 407-29.

    Google Scholar 

  • Schumacher, M., Hendrick, J.C. and Balthazart, J. (1989). Sexual differentiation in quail: critical period and hormonal specificity. Hormones Behav. 23, 130-49.

    Google Scholar 

  • Smith, C.A., Andrews, J.E. and Sinclair, A.H. (1997). Gonadal sex differentiation in chicken embryos: expression of estrogen receptor and aromatase genes. J. Steroid Biochem. Mol. Biol. 60, 295-302.

    Google Scholar 

  • Smith, C.A., McClive, P.J., Western, P.S., Reed, K.J. and Sinclair, A.H. (1999). Conservation of a sex-determining gene. Nature 402, 601-2.

    Google Scholar 

  • Smith, C.A. and Sinclair, A.H. (2001). Sex determination in the chicken embryo. J. Exp. Zool. 290, 691-9.

    Google Scholar 

  • Springer, M.L. and Wade, J. (1997). The effects of testicular tissue and prehatching inhibition of estrogen synthesis on the development of courtship and copulatory behavior in zebra finches. Hormones Behav. 32, 46-59.

    Google Scholar 

  • Teng, C.S. and Teng, C.T. (1979). Prenatal effect of the estrogenic hormone on embryonic genital organ differentiation. In T.H. Hamilton, J.H. Clark and W.A. Sadler (eds) Ontogeny of Receptors and Reproductive Hormone Action, pp. 421-40. New York: Raven Press.

    Google Scholar 

  • Viglietti-Panzica, C., Anselmetti, G., Balthazart, J., Aste, N. and Panzica, G. (1992). Vasotocinergic innervation of the septal region in the Japanese quail: sexual differences and the influence of testosterone. Cell Tissue Res. 267, 261-5.

    Google Scholar 

  • Viglietti-Panzica, C., Aste, N., Balthazart, J. and Panzica, G.C. (1994). Vasotocinergic innervation of sexually dimorphic medial preoptic nucleus of the male Japanese quail: influence of testosterone. Brain Res. 657, 171-84.

    Google Scholar 

  • Villalpando, I., Sanchez-Bringas, G., Sanchez-Vargas, I., Pedernera, E. and Villafan-Monroy, H. (2000). The P450 aromatase (P450 arom) gene is asymmetrically expressed in a critical period for gonadal sexual differentiation in the chick. General Comp. Endocrinol. 117, 325-34.

    Google Scholar 

  • Wade, J. and Arnold, A.P. (1996). Functional testicular tissue does not masculinize development of the zebra finch song system. Proc. Natl Acad. Sci. USA 93, 5264-8.

    Google Scholar 

  • Willier, B.H., Gallagher, T.F. and Koch, F.C. (1935). Sex-modification in the chick embryo resulting from injections of male and female hormones. Proc. Natl Acad. Sci. USA 21, 625-31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Brunström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunström, B., Axelsson, J. & Halldin, K. Effects of Endocrine Modulators on Sex Differentiation in Birds. Ecotoxicology 12, 287–295 (2003). https://doi.org/10.1023/A:1022567113596

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022567113596

Navigation