Skip to main content
Log in

Ab Initio Study of the Phosphorescence of Nitrite Ions

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In order to interpret the phosphorescence spectra of NaNO2 and similar single crystals, we performed MCSCF geometry optimization in the ground singlet (X 1 A 1) and in the first excited triplet (a 3 B 1) states of the NO -2 ion and MCSCF quadratic response (QR) calculation of the a 3 B 1X 1 A 1 transition probability at different bending angles and asymmetric stretch modes. The complete form of the spin–orbit coupling (SOC) operator is accounted for in the QR procedure. Dunning's correlation-consistent polarized valence double-ζ (cc-pVDZ) and triple-ζ (cc-pVTZ) basis sets are imployed. The electric-dipole transition moment from the T z spin sublevel (z is the C 2 axis) oriented along the y direction (the other in-plane axis) is found to be ≃5 times higher than that from the T y sublevel in the ground-state geometry. This is in agreement with polarization measurements and with optical detection of ESR spectra. The T zS 0 transition moment decreases almost linearly with an increase in the ONO bond angle. The so-called non-Condon effects in the phosphorescence spectra of NaNO2 crystals are explained on these backgrounds. The long progression of the bending vibrations (v 2, a 1) with an anomolous intensity distribution in the T zS 0 transition and additional involvement of the asymmetric stretch mode (v 3, b 2) in the T yS 0 transition are interpreted by force field and SOC calculations in the MCSCF-response technique. Configuration interaction (CI) calculations of the spin-allowed electric dipole transitions in NO -2 ions with effective one-electron SOC operator matrix element estimations were done for comparison with the results of the quadratic and linear response methods. Other T nS 0 transitions are also studied. Finally, a short discussion of nonradiative processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Jablonski (1933) Nature 131, 839.

    Google Scholar 

  2. A. N. Terenin (1943) Acta Physicochim. URSS 18, 210.

    Google Scholar 

  3. S. P. McGlynn, T. Azumi, and M. Kinoshita (1969) Molecular Spectroscopy of the Triplet State, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  4. H. J. Maria, A. Wahlborg, and S. P. McGlynn (1968) J. Chem. Phys. 49, 4925.

    Article  Google Scholar 

  5. W. Dietrich and D. Schmid (1976) Phys. Stat. Solid. B 74, 609.

    Google Scholar 

  6. R. M. Hochstrasser and A. P. Marchetti (1969) J. Chem. Phys. 50, 1727.

    Article  Google Scholar 

  7. K. E. Gotberg and D. S. Tinti (1985) Chem. Phys. 96, 109.

    Article  Google Scholar 

  8. A. Yamashita and T. Azumi (1984) J. Phys. Chem. 88, 4622.

    Google Scholar 

  9. M. I. Kay and B. C. Frazer (1961) Acta Cryst. 14, 56.

    Article  Google Scholar 

  10. B. F. Minaev (1976) Opt. Spectrosc. (USSR) 41, 446.

    Google Scholar 

  11. S. P. McGlynn (1973) Bull. Russ. Acad. Sci. Div. Phys. Sci. 37, 79.

    Google Scholar 

  12. B. F. Minaev, Z. M. Muldahmetov, I. S. Irgibaeva, T. O. Tlepbergenov, and D. M. Kizner (1982) Int. J. Quant. Chem. 22, 863.

    Google Scholar 

  13. B. F. Minaev, I. S. Irgibaeva, and Z. M. Muldahmetov (1984) Teor. Eksp. Khim. 20, 305.

    Google Scholar 

  14. H. Ågren, O. Vahtras, and B. F. Minaev (1996) Adv. Quantum Chem. 27, 71.

    Google Scholar 

  15. M. I. McCarthy, K. A. Peterson, and W. P. Hess (1996) J. Phys. Chem. 100, 6708.

    Article  Google Scholar 

  16. N. C. Handy, J. D. Goddard, and H. F. Schaefer III (1979) J. Chem. Phys. 71, 426.

    Article  Google Scholar 

  17. L. E. Harris (1973) J. Chem. Phys. 58, 5615.

    Article  Google Scholar 

  18. S. J. Strickler and M. Kasha (1963) J. Am. Chem. Soc. 85, 2899.

    Google Scholar 

  19. L. E. Rezmik (1978) Bull. Russ. Acad. Sci. Div. Phys. Sci. 42, 27.

    Google Scholar 

  20. K. K. Rebane and P. M. Saari (1973) Bull. Russ. Acad. Sci. Div. Phys. Sci. 37, 142.

    Google Scholar 

  21. K. K. Rebane and P. M. Saari (1976) Bull. Russ. Acad. Sci. Div. Phys. Sci. 40, 8.

    Google Scholar 

  22. I. R. Sildos, L. A. Rebane, and V. E. Peet (1980) J. Mol. Struct. (TEOCHEM) 61, 67.

    Article  Google Scholar 

  23. S. E. Clark and D. S. Tinti (1979) Chem. Phys. Lett. 60, 292.

    Article  Google Scholar 

  24. S. E. Clark and D. S. Tinti (1980) Chem. Phys. 51, 17.

    Article  Google Scholar 

  25. K. E. Gotberg and D. S. Tinti (1982) Mol. Phys. 47, 97.

    Google Scholar 

  26. W. C. Allen and R. N. Dixon (1969) Trans. Faraday Soc. 65, 1168.

    Article  Google Scholar 

  27. S. R. Langhoff and E. R. Davidson (1976) J. Chem. Phys. 64, 4699.

    Article  Google Scholar 

  28. B. F. Minaev (1979) Fizika Mol. Naukova Dumka Kiev 7, 34.

    Google Scholar 

  29. B. F. Minaev (1973) Studies of the Spin-Orbit Coupling Effects in Optical and ESR Spectra of Molecules, Ph.D. dissertation, Tomsk State University, USSR.

    Google Scholar 

  30. O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker, and J. Olsen (1992) J. Chem. Phys. 97, 9178.

    Article  Google Scholar 

  31. Y. Luo, D. Jonsson, P. Norman, K. Ruud, H. Ågren, B. Minaev, A. Rizzo, and K. V. Mikkelsen (1998) Int. J. Quant. Chem. 70, 219.

    Article  Google Scholar 

  32. T. Helgaker, H. J. Aa. Jensen, P. Jøsrgensen, J. Olsen, H. Ågren, K. L. Bak, V. Bakken, K. V. Mikkelsen, P. Norman, K. Ruud, P. R. Taylor, and O. Vahtras (1997) DALTON, a Second-Order MCSCF Molecular Property Program.

  33. D. E. Woon and T. H. Dunning (1993) J. Chem. Phys. 98, 1358.

    Article  Google Scholar 

  34. A. Schafer, H. Horn, and R. Ahlrichs (1992) J. Chem. Phys. 97, 2571.

    Article  Google Scholar 

  35. S. E. Clark and D. S. Tinti (1980) Chem. Phys. 53, 403.

    Article  Google Scholar 

  36. M. W. Schmidt, K. K. Baldridge, J. A. Boats, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, and T. L. Windus (1993) J. Comput. Chem. 14, 1347.

    Google Scholar 

  37. S. Koseki, M. H. Schmidt, M. S. Gordon, and N. Matsunaga (1995) J. Phys. Chem. 99, 12764.

    Google Scholar 

  38. P. J. Hay and T. H. Dunning Jr. (1977) J. Chem. Phys. 67, 2290.

    Article  Google Scholar 

  39. F. Kokai and T. Azumi (1982) J. Phys. Chem. 82, 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaev, B.F., Minaeva, V.A. Ab Initio Study of the Phosphorescence of Nitrite Ions. Journal of Fluorescence 9, 221–232 (1999). https://doi.org/10.1023/A:1022559717888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022559717888

Navigation