Skip to main content
Log in

Recrystallization of a Polygonized Molybdenum Crystal: Relation Between Dislocation Rearrangements and Formation of a New Orientation

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The mechanism of recrystallization is considered from a new standpoint using the results of a study of specially prepared single-crystal molybdenum specimens and with allowance for the relation between rearrangements of dislocations in the crystal and the appearance of a new orientation of recrystallized regions. It is shown that the reorientation of recrystallized microvolumes in a crystal is determined by the axis of their bending during deformation. The suggested mechanism makes it possible to explain extreme cases of recrystallization relaxation in metals from a single standpoint, i.e., in terms of the appearance and growth of recrystallization nuclei (polycrystals and highly strained single crystals) and in terms of the instantaneous “thermal” fragmentation into large recrystallized regions (weakly strained single crystals).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Hu, “Annealing of single crystals of silicon iron,” in: Recovery and Recrystallization of Metals, Coll. Works[Russian translation], Metallurgiya, Moscow (1966), p. 273.

    Google Scholar 

  2. J. C. M. Li, “The possibility of subgrain rotation during recrystallization,” J. Appl. Phys., 33, 2958 (1962).

    Google Scholar 

  3. J. E. Bailey, Electron microscopic observations of the processes or recovery and recrystallization in riveted metals,” in: Electron Microscopy and Strength of Crystals, Coll. Works[Russian translation], Metallurgiya, Moscow (1968), p. 321.

    Google Scholar 

  4. H. Hu, “Recrystallization by coalescence of subgrains,” in: Electron Microscopy and Strength of Crystals, Coll. Works[Russian translation], Metallurgiya (1968), p. 350.

  5. J. Martin and R. Doherty, Stability of the Microstructure of Metallic Systems[Russian translation], Atomizdat, Moscow (1978).

    Google Scholar 

  6. M. O. Cornfeld, “Formation of new grains in recrystallization,” Zh. Eksp. Teor. Fiz., No. 7, 450, (1937).

  7. R. I. Graber, V. I. Afanas’ev, Zh. I. Dranova, et al., “Low-temperature recrystallization of tungsten single crystals,” Zh. Eksp. Teor. Fiz., No. 50, 520 (1966).

    Google Scholar 

  8. E. M. Savitskii, G. S. Burkhanov, N. N. Bokareva, et al., “Effect of initial crystallographic orientation on the recrystallization temperature of wires obtained from molybdenum single crystals,” Dokl. Akad. Nauk SSSR, No. 172, 89 (1967).

    Google Scholar 

  9. V. I. Isaichev and L. N. Larikov, “A new type of recovery in annealing of molybdenum crystals deformed by cold rolling,” Dokl. Akad. Nauk SSSR, No. 224, 320 (1975).

    Google Scholar 

  10. L. N. Larikov, V. I. Isaichev, and E. A. Maksimenko, “Recovery of single crystals of molybdenum and molybdenum-rhenium alloy in deformation by cold rolling and annealing,” in: Single Crystals of Refractory and Rare Metals, Alloys, and Compounds, Coll. Works[in Russian], Nauka, Moscow (1977), p. 177.

    Google Scholar 

  11. V. I. Isaichev, L. N. Larikov, E. A. Maksimenko, et al., “Recovery of molybdenum single crystals alloyed with rhenium, osmium, and ruthenium,” Metallofizika, Issue 76, 39 (1979).

    Google Scholar 

  12. Yu. V. Baranov, E. P. Kostyukova, and Yu. V. Zamorov, “Effect of the structure of surface layers of strained tungsten on its polygonization and recrystallization,” Fiz. Met. Metalloved., No. 49, 1039 (1980).

    Google Scholar 

  13. V. M. Vladimirov and E. L. Romanov, Disclinations in Crystals[in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  14. V. A. Gladyshev and V. P. Kobyakov, “Some special features of bending deformation and subsequent annealing of single crystal molybdenum,” Fiz. Met. Metalloved., 54, 524 (1982).

    Google Scholar 

  15. V. P. Kobyakov and V. A. Gladyshev, “Effect of the degree of bending deformation on molybdenum single crystals in subsequent annealing,” Metallofizika, No. 7, 84 (1985).

    Google Scholar 

  16. V. P. Kobyakov and V. N. Taranovskaya, “Recrystallization of single crystal molybdenum deformed by deformation,” Fiz. Met. Metalloved., 73, 115 (1991).

    Google Scholar 

  17. A. A. Cottrell, “The theory of dislocations,” in: Advances in Metal Physics, Coll. Works[Russian translation], Metallurgiya, Moscow (1956), p. 155.

    Google Scholar 

  18. H. Van Bueren, Imperfections in Crystals, Amsterdam (1960).

  19. B. Chalmers, Physical Metallurgy[Russian translation], Metallurgizdat, Moscow (1963).

    Google Scholar 

  20. J. Friedel, Dislocations, Oxford (1964).

  21. R. W. Cahn, “Recovery and recrystallization,” in: Physical Metallurgy, Amsterdam (1965).

  22. E. M. Savitskii and G. S. Burkhanov, Single Crystals of Refractory and Rare Metals and Alloys[in Russian], Nauka, Moscow (1972).

    Google Scholar 

  23. R. Laudise and R. Parker, The Growth of Single Crystals, Prentice Hall, New York (1970).

    Google Scholar 

  24. S. S. Gorelik, Recrystallization of Metals and Alloys[in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  25. V. A. Hibbard and G. G. Dyne, “Polygonization,” in: Creep and Recovery, Coll. Works[Russian translation], Metallurgizdat, Moscow (1961), p. 62.

    Google Scholar 

  26. J. May, Polygonization of sapphire,” in: The Kinetics of High-Temperature Processes, Coll. Works[Russian translation], Metallurgiya, Moscow (1965), p. 57.

    Google Scholar 

  27. V. V. Pet’kov, V. P. Podorozhnyi, G. M. Bogun, et al., “High-temperature attached device for x-ray diffractometer,” Zavod. Lab., No. 50, 54 (1984).

    Google Scholar 

  28. J. Hirt and I. Lote, The Theory of Dislocations[Russian translation], Atomizdat, Moscow (1972).

    Google Scholar 

  29. E. É. Zasimchuk and V. S. Kravchenko, “Recrystallization caused by annihilation of dislocations,” Metallofizika, No. 2, 64 (1980).

    Google Scholar 

  30. Z. Gyulai, “Festigkeits und plastizitates Eigenschaften von NaCl-Nadelkristalln,” Z. Phys., No. 138, 317 (1954).

    Google Scholar 

  31. S. S. Brenner and C. R. Morelock, “The high-temperature recovery of deformed copper whiskers,” Acta Met., No. 4, 89 (1956).

    Google Scholar 

  32. F. R. N. Nabarro, “The theory of whisker dekinking,” in: Proc. Int. Conf. Dislocations and Mechanical Properties of Crystals, Lake Placid, 1956, J. Wiley & Sons Inc., New York (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobyakov, V.P. Recrystallization of a Polygonized Molybdenum Crystal: Relation Between Dislocation Rearrangements and Formation of a New Orientation. Metal Science and Heat Treatment 44, 499–504 (2002). https://doi.org/10.1023/A:1022556822501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022556822501

Keywords

Navigation