Skip to main content
Log in

Homogeneous Detection of Specific DNA Sequences by Fluorescence Quenching and Energy Transfer

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of fluorescence quenching and energy transfer in DNA hybridization assays is reviewed. Placement of DNA probe labels within interacting distances by hybridization of DNA probes to target DNA or to one another allows rapid homogeneous analysis of specific DNA sequences. Due to the inherently lower sensitivity relative to heterogeneous assays, the fluorescence assays have been coupled with DNA amplification methods such as PCR to provide highly sensitive, clinically relevant homogeneous assays which can be performed in closed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. F. Ullman, M. Schwarzberg, and K. E. Rubenstein (1976) J. Biol. Chem. 251, 4172–4178.

    PubMed  Google Scholar 

  2. M. J. Heller, L. E. Morrison, W. D. Prevatt, and C. Akin (1983) Published European Patent Application 070 685.

  3. M. J. Heller and L. E. Morrison (1985) in D. T. Kingsbury and S. Falkow (Eds.), Rapid Detection and Identification of Infectious Agents, Academic Press, Orlando, FL, pp. 245–256.

    Google Scholar 

  4. R. A. Cardullo, S. Agrawal, C. Flores, C. Zamecnik, and D. E. Wolf (1988) Proc. Natl. Acad. Sci. USA 85, 8790–8794.

    PubMed  Google Scholar 

  5. L. E. Morrison (1987) Published European Patent Application 232 967.

  6. R. A. Cardullo, S. Agrawal, C. Flores, C. Zamecnik, and D. E. Wolf (1988) Proc. Natl. Acad. Sci. USA 85, 8790–8794.

    PubMed  Google Scholar 

  7. L. E. Morrison, T. C. Halder, and L. M. Stols (1989) Anal. Biochem. 183, 231–244.

    PubMed  Google Scholar 

  8. J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy, Plenum Press, New York, Chap. 9.

    Google Scholar 

  9. L. E. Morrison (1995) in L. J. Kricka (Ed.), Nonisotopic Probing, Blotting, and Sequencing, Academic Press, New York, pp. 429–471.

    Google Scholar 

  10. T. Förster (1959) Disc. Faraday Soc. 27, 7–17.

    Article  Google Scholar 

  11. M. J. Heller and E. J. Jablonski (1987) European Patent Application 229 943.

  12. L. E. Morrison, unpublished data.

  13. R. Kierzek, Y. Li, D. H. Turner, and P. C. Bevilacqua (1993). J. Am. Chem. Soc. 115, 4985–4992.

    Google Scholar 

  14. J. Yguerabide, E. Talavera, J. M. Alvarez and M. Afkir (1996) Anal. Biochem. 241, 238–247.

    Article  PubMed  Google Scholar 

  15. C. T. Wittwer, M. G. Herrmann, A. A. Moss, and R. P. Rasmussen (1997) BioTechniques 22, 130–138.

    PubMed  Google Scholar 

  16. S. Tyagi and F. Kramer (1996) Nature Biotech. 14, 303–308.

    Article  Google Scholar 

  17. A. S. Piatek, S. Tyagi, A. C. Pol, A. Telenti, L. P. Miller, F. R. Kramer, and D. Alland (1998) Nature Biotech. 16, 359–363.

    Article  Google Scholar 

  18. S. Tyagi, D. P. Bratu, and F. R. Kramer (1998) Nature Biotech. 16, 49–53.

    Article  Google Scholar 

  19. P. S. Bernard, M. I. Lay, and C. T. Wittwer (1998) Anal. Biochem. 255, 101–107.

    Article  PubMed  Google Scholar 

  20. L. G. Lee, C. R. Connell, and W. Bloch (1993) Nucleic Acids Res. 21, 3761–3766.

    PubMed  Google Scholar 

  21. X. Chen, B. Zehnbauer, A. Gnirke, and P.-Y. Kwok (1997) Proc. Natl. Acad. Sci. USA 94, 10756–10761.

    Article  PubMed  Google Scholar 

  22. P.-W. Chiang, W.-J. Song, K.-Y. Wu, J. R. Korenberg, E. J. Fogel, M. L. Van Keuren, D. Lashkari, and D. M. Kurnit (1996) Genome Res. 6, 1013–1026.

    PubMed  Google Scholar 

  23. I. A. Nazarenko, S. K. Bhatnagar, and R. J. Hohman (1997) Nucleic Acids Res. 25, 2516–2521.

    Article  PubMed  Google Scholar 

  24. L. E. Morrison and L. M. Stols (1993) Biochemistry 32, 3095–3104.

    PubMed  Google Scholar 

  25. L. E. Morrison (1988) Anal. Biochem. 174, 101–120.

    PubMed  Google Scholar 

  26. R. M. Clegg, A. I. H. Murchie, A. Zechel, and D. M. J. Lilley (1993) Proc. Natl. Acad. Sci. USA 90, 2994–2998.

    PubMed  Google Scholar 

  27. T. A. Perkins, J. L. Goodman, and E. T. Kool (1993) J. Chem. Soc. Chem. Commun. 215–216.

  28. J. P. Cooper and P. J. Hagerman (1990) Biochemistry 29, 9261–9268.

    PubMed  Google Scholar 

  29. H. Ozaki and L. W. McLaughlin (1992) Nucleic Acids Res. 20, 5205–5214.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, L.E. Homogeneous Detection of Specific DNA Sequences by Fluorescence Quenching and Energy Transfer. Journal of Fluorescence 9, 187–196 (1999). https://doi.org/10.1023/A:1022551516070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022551516070

Navigation