Skip to main content
Log in

Fluorescence Probes for Cyclodextrin Interiors

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

6-Propionyl-2-(dimethylamino)naphthalene (PRODAN) emits two fluorescence bands, at ∼510 and ∼435 run, when dissolved in γ-cyclodextrin (CD) aqueous solutions. The relative contributions of these two bands were found to depend on time and temperature. These emissions are attributed to the inclusion of PRODAN with the dimethylamino group toward the larger and smaller rims inside the γ-CD cavities, respectively. The first position corresponds to a slightly polar and slightly rigid environment, while the second corresponds to a hydrophobic and rigid environment relative to the aqueous polar bulk. In contrast, PRODAN in either α-CD or β-CD aqueous solutions emits a single fluorescence band at 525 and 510 nm, respectively. The emission of PRODAN in α-CD is similar to that in water and indicates no inclusion at all. In β-CD, only one kind of inclusion is possible with the dimethylamino group of PRODAN toward the larger rims of β-cavities. These results are supported by fluorescence decay lifetime measurements and are consistent with our previous observations made for 4-dimethylaminobenzonitrile (DMABN) and 4-diethylaminobenzonitrile (DEABN) in α- and β-CD aqueous solutions [23,24]. Therefore the possibility of twisted intramolecular charge transfer (TICT) state formation in PRODAN in terms of environmental polarity and local free volume of CD cavities is discussed. These observations put PRODAN, DMABN, and other TICT compounds as fluorescence probes for CD interiors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Weber and F. G. Farris (1979) Biochemistry 18, 3075.

    Google Scholar 

  2. P. Avouris, W. M. Gelbert, and M. A. El-Sayed (1977) Chem. Rev. 77, 793.

    Google Scholar 

  3. J. R. Lackowicz and A. Balter (1982) Biophys. Chem. 16, 117.

    Google Scholar 

  4. W. Nowak, P. Adamczak, A. Balter, and A. Sygula (1986) J. Mol. Struct. (Theochem.) 13, 139.

    Google Scholar 

  5. A. Balter, W. Nowak, W. Pawelkiewicz, and A. Kowalczyk (1988) Chem. Phys. Lett. 143, 565.

    Google Scholar 

  6. P. L. G. Chong (1988) Biochemistry 27, 399.

    Google Scholar 

  7. A. Sommer, F. Baltauf, and A. Hermetter (1990) Biochemistry 29, 11134.

    Google Scholar 

  8. J. Zeng and P. L. G. Chong (1991) Biochemistry 30, 9485.

    Google Scholar 

  9. H. Rottenberg (1992) Biochemistry 31, 9473.

    Google Scholar 

  10. U. Narang, J. D. Jordan, F. V. Bright, and P. N. Prasad, (1994) J. Phys. Chem. 89, 8101.

    Google Scholar 

  11. E. Lippert, W. Luder, and H. Boss (1962) in A. Mangini (Ed.), Advances in Molecular Spectroscopy, Pergamon Press, Oxford.

    Google Scholar 

  12. G. Wermuth and W. Rettig (1984) J. Phys. Chem. 88, 2729.

    Google Scholar 

  13. J. Lipinski, H. Chojnacki, Z. R. Grabowski, and K. Rotkiewicz (1980) Chem. Phys. Lett. 70, 449.

    Google Scholar 

  14. A. M. Rollinson and H. G. Drickamer (1980) J. Chem. Phys. 73, 5981.

    Google Scholar 

  15. P. Ilich and F. G. Prendergast (1989) J. Phys. Chem. 93, 4441.

    Google Scholar 

  16. F. Heisel, J. A. Miehê, and A. W. Szemik (1987) Chem. Phys. Lett. 138(4), 321.

    Google Scholar 

  17. C. E. Bunker, T. L. Bowen, and Y. Sun (1993) Photochem. Photobiol. 58(4), 499.

    Google Scholar 

  18. W. Rettig (1986) Angew. Chem. Int. Ed. Engl. 25, 971.

    Google Scholar 

  19. K. A. Al-Hassan and W. Rettig (1986) Chem. Phys. Lett. 126, 273.

    Google Scholar 

  20. K. A. Al-Hassan and T. Azumi. (1989) Chem. Phys. Lett. 129, 163.

    Google Scholar 

  21. R. Hayashi, S. Tazuke, and C. W. Frank (1987) Chem. Phys. Lett. 135, 123; (1987) Macromolecules 20, 983.

    Google Scholar 

  22. K. A. Al-Hassan, M. A. Meetani, and Z. F. M. Said (1998) J. Fluoresc. (in press).

  23. K. A. Al-Hassan, U. K. A. Klein, and A. Suwaiyan, (1993) Chem. Phys. Lett. 212, 581.

    Google Scholar 

  24. K. A. Al-Hassan (1994) Chem. Phys. Lett. 227, 527.

    Google Scholar 

  25. K. A. Al-Hassan, A. Suwaiyan, and U. K. A. Klein (1997) Arab. J. Sci. Eng. 22, 45–55.

    Google Scholar 

  26. A. C. R. Villiers (1891) Acad. Sci. Paris 539.

  27. F. Schardinger and Z. Unters (1903) Nahrungs-Genussmittel Gebrauchsgegenstande 6, 865.

    Google Scholar 

  28. H. Bender (1978) Carbohydr. Res. 65, 85.

    Google Scholar 

  29. D. D. MacNicol, J. J. Mckendrick, and D. R. Wilson (1978) Chem. Soc. Rev. 7, 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hassan, K.A., Khanfer, M.F. Fluorescence Probes for Cyclodextrin Interiors. Journal of Fluorescence 8, 139–152 (1998). https://doi.org/10.1023/A:1022550409844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022550409844

Navigation