Neurochemical Research

, Volume 24, Issue 4, pp 587–594 | Cite as

Defective Glucose Transport Across Brain Tissue Barriers: A Newly Recognized Neurological Syndrome

  • Jörg Klepper
  • Dong Wang
  • Jorge Fischbarg
  • Juan Carlos Vera
  • Imad T. Jarjour
  • Kevin R. O'Driscoll
  • Darryl C. De Vivo
Article

Abstract

Impaired glucose transport across brain tissue barriers causes infantile seizures, developmental delay and acquired microcephaly. Since the first report in 1991 (De Vivo et al, NEJM, 1991) 17 patients have been identified with the glucose transporter protein syndrome (GTPS). The diagnostic feature of the syndrome is an unexplained hypoglycorrhachia in the clinical setting of an infantile epileptic encephalopathy. We review our clinical experience by highlighting one illustrative case: a 6-year old girl who presented at age 2 months with infantile seizures and hypoglycorrhachia. The CSF/blood glucose ratio was 0.33. DNA sequencing identified a missense mutation in exon 7 (C1108T). Erythrocyte GLUT1 immunoreactivity was normal. The time course of 3-0-methyl-glucose (3OMG) uptake by erythrocytes of the patient was 46% that of mother and father. The apparent Km was similar in all cases (2–4 mmol/L), but the apparent Vmax in the patient was only 28% that of the parents (500 versus 1,766 fmol/s/106RBC; p < 0.004). In addition, a 3-month trial of oral thioctic acid also benefited the patient and increased the Vmax to 935 fmol/s/106 RBC (p < 3 × 10−7). Uptake of dehydroascorbic acid by erythrocytes of the patient was impaired to the same degree as that of 3OMG (Vmax was 38% of that of the mother's), which supports previous observations of GLUT1 being multifunctional. These studies confirm the molecular basis of the GTPS and the multifunctional role of GLUT1. The need for more effective treatment is compelling.

Glucose transport blood-brain-barrier GLUT-1 GTPS DeVivo Disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bell, I.G., Burant, C.F., Takeda, J., and Gould, G.W. 1993. Structure and function of mammalian facilitative sugar transporters [review]. J. Biol. Chem. 268:19161-4Google Scholar
  2. 2.
    Bell, I.G., Kayano, T., Buse, J.B., Burant, D.F., Takeda, J., Lin, D., Fukumoto, H., and Seino S. 1990. Molecular biology of mammalian glucose transporters. Diab Care 13:198-208Google Scholar
  3. 3.
    Bimbaum, M.J., Haspel, H.C., and Rosen, O.M. 1986. Cloning and characterization of a cDNA encoding the rat brain glucose transporter protein. Proc. Natl. Acad. Sci. USA 83:5784-5788Google Scholar
  4. 4.
    Wright, E.M. 1993. The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55:575-89Google Scholar
  5. 5.
    Baldwin, S.A. 1993. Mammalian passive glucose transporters: members of active and passive transport proteins [review]. Biochim. Biophys. Acta. 1154:17-49Google Scholar
  6. 6.
    Gould, G.W., and Holman, G.D. 1993. The glucose transporter family: structure, function and tissue-specific expression [review]. Biochem. J. 295:329-41Google Scholar
  7. 7.
    Tanaka, K., Hirano, H., and kasahara, M. 1997. Transport of glucose across the blood-tissue barriers. Int. Rev. Cytol. 172:1-52Google Scholar
  8. 8.
    Mueckler, M., Caruso, C., and Baldwin, S.A. et al. Sequence and structure of a human glucose transporter. Science 1985; 228:941-945Google Scholar
  9. 9.
    Pardridge, W.M., Boado, R.J., Farrell, C.R. Brain-type glucose transporter (Glut-1) is selectively localized to the blood-brain-barrier. J. Biol. Chem. 1990;265:18035-40.Google Scholar
  10. 10.
    Chugani, H.T., 1994. Development of regional brain glucose metabolism in relation to behavior and plasticity. In: Dawson G, Fischer, K.W. (ed): human behavior and the developing brain, Guildford Press, New York Ch. 5:153-175Google Scholar
  11. 11.
    Clarke, D.D., and Sokoloff, L. 1994. Circulation and energy metabolism of the brain. In: Siegel G.J. et al (ed). Basic neurochemistry: molecular, cellular and medical aspects. 5th ed:645-748, Raven Press, New York.Google Scholar
  12. 12.
    Cremer, J.E. Substrate Utilization and brain development. J Cerebr Blood Flow Metabol 1982;2:394-407Google Scholar
  13. 13.
    De Vivo, D.C., Trifiletti, R.R., Jacobson, R.I., Ronen, G.M., Behmand, R.A., and Harik, S.I. 1991. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. NEJM 325:703-9Google Scholar
  14. 14.
    De Vivo, D.C., Garcia-Alvarez, M., Ronen, G., and Trifiletti, R. 1995. Glucose transport protein deficiency: an emerging syndrome with therapeutic implications. Int. Ped. 10:51-6Google Scholar
  15. 15.
    Klepper, J., Wang, D., Garcia, Alvarez, M., Hinton, V.J., Nordli, D.R., Jr., O'Driscoll, K.R., and De Vivo, D.C. 1998. GTPS: Defining a new syndrome. Neurology 4;Suppl 4:A6Google Scholar
  16. 16.
    Lyon, G. 1996. Early infantile progressive metablic encephalopathies: clinical problems and diagnostic considerations. In: Neurology of hereditary metabolic diseases of children, 2nd ed. McGraw-Hill:84Google Scholar
  17. 17.
    Seidner, G., Garcia-Alvarez, M., Yeh, J.I., O'Driscoll, K., Klepper, J., R., Stump, T.S., Wang, D., Spinner, N.B., Birnbaum, M.J., and De Vivo, D.C. Glut-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nature Gen. 1998;18:1-4Google Scholar
  18. 18.
    Fordtran, J.S., Clodi, P.H., Soergel, M.D., and Ingelfinger, F.J. 1962. Sugar absorption tests, with special reference to 3-O-methyl-d-glucose and d-xylose. Ann. Int. Med. 57:883-91Google Scholar
  19. 19.
    Lowe, A.G., and Walmsley, A.D. 1986. The kinetics of glucose transport in human red blod cells. Biochim. Biophys. Acta. 857:146-54Google Scholar
  20. 20.
    Lowe, A.G., and Walmsley, A.D. 1985. A quenched flow technique for the measurement of glucose influx into human red blood cells. Analytical Biochem. 144:385-9Google Scholar
  21. 21.
    Vengelen-Tyler, V. (ed). 1996 American Association of blood banks. Technical Manual, 12th edition:135.Google Scholar
  22. 22.
    Moore, P.A., Preparation of whole blood for liquid scintillation counting. Clin. Chem. 1981;27:609-11Google Scholar
  23. 23.
    Vera, J.C., Rivas C.I., Velasquez, H.V., Zhang R.H., Concha L.I., and Golde D.W. 1995. Resolution of the facilitated transport of dehydroascorbic acid from its reduction-dependent intracellular accumulation. J. Biol. Chem. 270, 23706-23712Google Scholar
  24. 24.
    Fukumoto, H., Seino, S., Imura, H., Seino, Y., Bell, G.I. 1988. Characterization and expression of human HepG2/erythrocyte glucose-transporter gene. Diabetes 37:657-661Google Scholar
  25. 25.
    Hayashi, K., Yandell, D.W. 1993. How sensitive is PCT-SSCP? Human Mutation 2:338-346Google Scholar
  26. 26.
    Yu, F., Warburton, D., Wellington, D., and Danziger, R.S. 1996. Assignment of gene coding for alpha2 subunit of soluble quanylyl cyclase to position 11q21–22 on human chromosome 11. Genomics. 33:334-336Google Scholar
  27. 27.
    Kumagai, A.K., Dwyer K.J., and Pardridge W.M. 1993. Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus. Biochim. Biophys. Acta. 1193:24-30Google Scholar
  28. 28.
    Dick, A.P.K., Harik, S.I., Klip, A., and Walker D.M. 1984. Identification and characterization of the glucose transporter of the blood/brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl. Acad. Sci. U.S.A. 81:7233-7.Google Scholar
  29. 29.
    Vannucci, S.J., Maher, F., and Simpson, I.A., 1997. Glucose transporter proteins in brain:delivery of glucose to neurons and glia [review]. Glia. 21:2-21Google Scholar
  30. 30.
    Hediger, M.A., Coady, M.J., Ikeda T.S., and Wright E.M. 1987. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330:379-381Google Scholar
  31. 31.
    Martin, M.G., Turk E., Lostao, M.P., Kerner, C., and Wright E.M. 1996. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose/galactose malabsorption. Nat. Genet. 12:216-20Google Scholar
  32. 32.
    Maher, R., Vanucci, S.J., Simpson, I.A., Glucose transporter proteins in [review]. FASEB J. 1994;8:1003-11Google Scholar
  33. 33.
    Morgello, S., Uson, R.R., Schwartz, E.J., and Haber, R.S. 1995. The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia. 14:43-54Google Scholar
  34. 34.
    Seatter, M.J., Kane, S., Porter, L.M., Arbuckle, M.I., Melvin, D.R., and Gould, G.W. 1997. Structure-function studies of the brain-type glucose transporter,GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Biochem. 36:6401-6407Google Scholar
  35. 35.
    McGowan, K.M., Long, S.D., and Pekala, P.H. 1995. Glucose transporter gene expression: regulation of transcription and mRNA stablity. Pharmac. Ther.; 66:465-505Google Scholar
  36. 36.
    Klip, A., Tsakiridis, T., Marette, A., Oritz, P.A. 1994. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB 8:43-53Google Scholar
  37. 37.
    De Vivo, D.C., Garcia, Alvarez, M., and Tritschler, H.J., 1996. Deficiency of glucose transporter protein type I: possible therapeutic role for alpha-lipoic acid (thioctic acid). Diabetes und Stoffwechsel 5:36-40Google Scholar
  38. 38.
    Wertheimer, E., Sasson, S., Cerasi, E., and Ben-Neriah, Y. 1991. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc. Natl. Acad. Sci. USA 88:2525-2529Google Scholar
  39. 39.
    Lawrence, M.S., Sun, G.H., Kunis, D.M., Saydam, T.C., Dash, R., Ho, D.Y., Sapolsky, R.M., and Steinberg, G.K. 1996. Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke. J. Cereb. Blood. flow. Metab. 16:181-85Google Scholar
  40. 40.
    Sofue, M., Yoshimura, Y., Nishida, M., and Kawada, J. 1992. Possible multifunction of glucose transporter. Biochem. J. 288:669-674Google Scholar
  41. 41.
    Fischbarg, J., and Vera, J.C. 1995. Multifunctional transporter models: lessons from the transport of water, sugars, and ring compounds by GLUTs. Am. J. Physiol. 268:C1077-C1089Google Scholar
  42. 42.
    Carruthers, A. 1990. Facilitated diffusion of glucose [review]. Physiol Rev. 70:1135-76Google Scholar
  43. 43.
    Fischbarg, J., Kuang, K., Vera, J.C., Arant, S., Silverstein, S.C., Loike, J., Rosen, O.M. Glucose transporters serve as water channels. Proc. Natl. Acad. Sci. USA (1990) 87:3244-3247Google Scholar
  44. 44.
    Vera, J.C., Rivas, C.I., Fischbarg, J., and Tgolde, D.W. 1993. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79-82Google Scholar
  45. 45.
    Agus, D.B., Gambhir, S.S., Pardridge, W.M., Spielholz, C., Baselga, J., Vera, J.C., and Golde, D.W. 1997. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin. Invest. 100:2842-2848Google Scholar
  46. 46.
    Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I., and Levine, M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem. 1997;272:18982-18989Google Scholar
  47. 47.
    Polt, R., Porreca, F., Szabo, L.Z., Bilsky, E.J., Davis, P., Abbruscato, T.J., Davis, T.P., Horvath, R., Yamamura, H.I., and Hruby, V.J. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc. Natl. Acad. Sci. USA 1994; 91:7114-7118Google Scholar
  48. 48.
    Klepper, J., Vera, J.C., De Vivo, D.C. 1998. Deficient transport of dehydroascorbic acid in the glucose transporter protein syndrome. Ann. Neur. 44:286-287.Google Scholar
  49. 49.
    Nordli DR Jr, De Vivo DC. 1997. The ketogenic diet revisited: back to the Future. Epilepsia 38(7):743-749.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Jörg Klepper
    • 1
  • Dong Wang
    • 1
  • Jorge Fischbarg
    • 2
  • Juan Carlos Vera
    • 3
  • Imad T. Jarjour
    • 4
  • Kevin R. O'Driscoll
    • 1
  • Darryl C. De Vivo
    • 1
  1. 1.Division of Pediatric NeurologyColumbia UniversityNew York
  2. 2.Departments of Physiology and Cellular Biophysics and OphthalmologyColumbia UniversityNew York
  3. 3.Rockefeller Research LaboratoriesMemorial Sloan-Kettering Cancer CenterNew York
  4. 4.Department of Neurology and PediatricsAllegheny University of the Health SciencesPittsburgh

Personalised recommendations