Skip to main content
Log in

Changes in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine)

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In A. angustifolia seeds the highest values of freeIAA occurred in the embryonic axis, at the initial phases of development. Thesevalues decreased sharply coincident with the increase of IAA with thedifferentiation of cotyledons and seed elongation. During seed development,tryptophan concentrations varied inversely with free IAA and directly withconjugated IAA. An increase in peroxidase activity was followed by a decreaseinfree IAA in the embryo axis, and in conjugated IAA in the megagametophyte.Megagametophyte tissues did not exhibit significant variation in free IAAduringseed development. Following the stage where cotyledons arise, tryptophandecreased in the megagametophyte and increased in the cotyledons and embryonicaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen J.R.F. and Baker D.A. 1980. Free tryptophan and indole-3-acetic acid levels in the leaves and vascular pathways of Ricinus communis L.. Planta 148: 69-74.

    Google Scholar 

  • Arezki O., Boxus P., Kevers K. and Gaspar T. 2001. Changes in peroxidase activity, and level of phenolic compounds during light-induced plantlet regeneration from Eucalyptus camaldulensisDehn. nodes in vitro. Plant Growth Regul. 33: 215-219.

    Google Scholar 

  • Astarita L.V. and Guerra M.P. 1998. Early somatic embryogenesis in Araucaria angustifolia. Induction and maintenance of embryonal-suspensor masses cultures. R. Bras. Fisiol. Veg. 10: 113-118.

    Google Scholar 

  • Astarita L.V., Floh E.I.S. and Handro W. 2002. Free amino acid pool and protein changes associated with zygotic embryogenesis in Brazilian pine (Araucaria angustifolia). Rev. Bras. Bot. (in press).

  • Baldi B.G., Maher B.R., Slovin J.P. and Cohen J.D. 1991. Stable isotope labeling, in vivo, of D-and L-tryptophan pools in Lemna gibbaand low incorporation of label into indole-3-acetic acid. Plant Physiol. 95: 1203-1208.

    Google Scholar 

  • Bandurski R.S., Cohen J.D., Slovin J.P. and Reinecke D.M. 1995. Hormone biosynthesis and metabolism. In: Davies P.J. (ed.), Plant Hormones. Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, pp. 39-65.

    Google Scholar 

  • Bartel B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. Mol. Biol. 48: 51-66.

    Google Scholar 

  • Bialek K. and Cohen J.D. 1989. Quantification of indoleacetic acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol. 90: 398-400.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

    Google Scholar 

  • Cleland R.E. 1995. Auxin and cell elongation. In: Davies P.J. (ed.), Plant Hormones. Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, pp. 214-227.

    Google Scholar 

  • Dodeman V.L., Ducreux G. and Kreis M. 1997. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509.

    Google Scholar 

  • Duarte L.S. and Dillenburg L.C. 2001. Ecophysiological responses of Araucaria angustifolia(Araucariaceae) seedlings to different irradiance levels. Aust. J. Bot. 48: 531-537.

    Google Scholar 

  • Epstein E., Cohen J.D. and Bandurski R.S. 1980. Concentration and metabolic turnover of indoles in germinating kernels of Zea maysL. Plant Physiol. 65: 415-421.

    Google Scholar 

  • Faivre-Rampant O., Kevers C. and Gaspar T. 2000. IAA-oxidase activity and auxin protectors in non rooting, rac, mutant shoots of tobacco in vitro. Plant Science 153: 73-80.

    Google Scholar 

  • Fischer C., Speth V., Fleig-Eberenz S. and Neuhaus G. 1997. Induction of zygotic polyembryos in wheat: influence of auxin polar transport. Plant Cell 9: 1767-1780.

    Google Scholar 

  • Gaspar T., Penel C., Hagege D. and Grepin H. 1991. Peroxidases in plant growth, differentiation, and development processes. In: Laborzewski J., Greppin H., Penel C. and Gaspar T. (eds), Biochemical, molecular, and physiological aspects of plant peroxidases., Geneve, pp. 249-280.

  • Geldner N., Hamann T. and Jurgens G. 2000. Is there a role for auxin in early embryogenesis? Plant Growth Regul. 32: 187–191.

    Google Scholar 

  • Hadfi K., Speth V. and Neuhaus G. 1998. Auxin-induced developmental patterns in Brassica junceaembryos. Development 125: 879-887.

    Google Scholar 

  • Harada J.J. 1999. Signaling in plant embryogenesis. Current Opinion in Plant Biology 2: 23-27.

    Google Scholar 

  • Hocher V., Sotta B., Maldiney R., Bonnet M. and Miginiac E. 1992. Changes in indole-3-acetic acid levels during tomato (Lycopersicon esculentumMill.) seed development. Plant Cell Rep. 11: 253-256.

    Google Scholar 

  • Jiménez V.M. 2001. Regulation of in vitrosomatic embryogenesis with emphasis on the role of endogenous hormones. R. Bras. Fisiol. Veg. 13: 196-223.

    Google Scholar 

  • Laukkanen H., Haggman H., Kontunen-Soppela S. and Hohtola A. 1999. Tissue brownig of in vitrocultures of Scots pine: role of peroxidase and polyphenol oxidase. Physiol. Plant. 106: 337–343.

    Google Scholar 

  • Liu C-M., Xu Z-H. and Chua N-H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. The Plant Cell 5: 621-630.

    Google Scholar 

  • Lyndon R.F. 1990. Plant development. The Cellular Basis. Unwin Hyman, London, 320 p.

    Google Scholar 

  • Marur C.J., Sodeck L. and Magalhães A.C.N. 1994. Free amino acids in leaves of cotton plants under water deficit. Rev. Brasil. Fisiol. Veg. 6: 103-108.

    Google Scholar 

  • Michalczuk L., Cooke T.D. and Cohen J.D. 1992a. Auxin levels at different stages of carrot somatic embryogenesis. Phytochem. 4: 1097-1103.

    Google Scholar 

  • Michalczuk L., Cooke T.D. and Cohen J.D. 1992b. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100: 1346-1356.

    Google Scholar 

  • Naderi M., Caplan A. and Berger P.H. 1997. Phenotypic characterization of tobacco mutant impaired in auxin polar transport. Plant Cell Rep. 17: 32-38.

    Google Scholar 

  • Okada K., Ueda J., Komaki M.K., Bell C.J. and Shimura Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsisfloral bud formation. The Plant Cell. 3: 667–684.

    Google Scholar 

  • Quatrano R.S. 1987. The role of hormones during seed development. In: Davies P.J. (ed.), Plant Hormones and Their Role in Plant Growth and Development. Kluwer Academic Publishers, Dordrecht, pp. 494-553.

    Google Scholar 

  • Riquelme A. and Cardemil L. 1995. Two cationic peroxidases from cell walls of Araucaria araucanaseeds. Phytochem. 39: 29–32.

    Google Scholar 

  • Rubery P.H. 1987. Auxin transport. In: Davies P.J. (ed.), Plant Hormones and Their Role in Plant Growth and Development. Kluwer Academic Publishers, Dordrecht, pp. 341-362.

    Google Scholar 

  • Steimann T., Geldner N., Grebe M., Mangold S., Jackson C.L., Paris S. et al. 1999. Coordinated polar localization of auxin ef-flux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318.

    Google Scholar 

  • Valpuesta V., Quesada M.A., Sanchez-Roldan C., Tigier H.A., Heredia A. and Bukovac M.J. 1991. Involvement of peroxidase isoenzymes in the growth of peach fruits. In: Laborzewski J., Greppin H., Penel C. and Gaspar T. (eds), Biochemical, Molecular, and Physiological Aspects of Plant Peroxidases., Geneve, pp. 315-324.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astarita, L.V., Floh, E.I. & Handro, W. Changes in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine). Plant Growth Regulation 39, 113–118 (2003). https://doi.org/10.1023/A:1022542618945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022542618945

Navigation