Skip to main content
Log in

Characterization of T cell hybridomas raised against a glycopeptide containing the tumor-associated T antigen, (βGal (1–3) αGalNAc-O/Ser)

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

T cell hybridomas were raised against the glycopeptide S72 (Core-1) containing the tumor-associated disaccharide βGal (1–3) αGalNAc (Core-1) O-linked to serine at position 72 in the mouse hemoglobin derived decapeptide Hb (67–76). All hybridomas recognized the glycopeptide S72 (Core-1). Two of the selected hybridomas responded, however, much better to the S72 (Tn) glycopeptide containing the monosaccharide αGalNAc O-linked to serine. In addition, one hybridoma cross-responded to the glycopeptide T72 (Core-1) having a threonine at position 72 instead of a serine. No cross-responses were found to other glycopeptides consisting of the same hemoglobin peptide with different glycans attached or to the unglycosylated peptides. The T cell receptor Vα and Vβ usage was clearly diverse. The CDR3α regions demonstrated moreover a predominance of small polar amino acid side chains, and three hybridomas contained a common sequence motif. All the sequenced CDR3β regions contained furthermore a conserved proline-glycine motif. In conclusion, immunization with the disaccharide containing glycopeptides S72 (Core-1) created a heterogeneous population of glycopeptide specific T cells with the ability of cross-responding toward related glycopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastrup IB, Andersen MH, Elliott T, Haurum JS, MHC-restricted T cell responses against posttranslationally modified peptide antigens, Adv Immunol 78, 267–89 (2001).

    PubMed  Google Scholar 

  2. Springer GF, Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J Mol Med 75, 594–602 (1997).

    PubMed  Google Scholar 

  3. Galli-Stampino L, Meinjohanns E, Frische K, Meldal M, Jensen T, Werdelin O, Mouritsen S, T-cell recognition of tumor-associated T cell hybridomas recognizing a T-antigen containing glycopeptide 65 carbohydrates: The nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity, Cancer Res 57, 3214–22 (1997).

    Google Scholar 

  4. Jensen T, Galli-Stampino L, Mouritsen S, Frische K, Peters S, Meldal M, Werdelin O, T cell recognition of Tn-glycosylated peptide antigens, Eur J Immunol 26, 1342–9 (1996).

    PubMed  Google Scholar 

  5. Jensen T, Hansen P, Galli-Stampino L, Mouritsen S, Frische K, Meinjohanns E, Meldal M, Werdelin O, Carbohydrate and peptide specificity of MHC class II-restricted T cell hybridomas raised against an O-glycosylated self peptide, J Immunol 158, 3769–78 (1997).

    PubMed  Google Scholar 

  6. Fremont DH, Hendrickson WA, Marrack P, Kappler J, Structures of an MHC class II molecule with covalently bound single peptides, Science 272, 1001–4 (1996).

    PubMed  Google Scholar 

  7. Evavold BD, Williams SG, Hsu BL, Buus S, Allen PM, Complete dissection of the Hb(64–76) determinant using T helper 1, T helper 2 clones, and T cell hybridomas, J Immunol 148, 347–53 (1992).

    PubMed  Google Scholar 

  8. Jensen T, Hansen P, Faurskov Nielsen A, Meldal M, Komba S, Werdelin O, Shared structural motifs in TCR of glycopeptide recognizing T cell hybridomas, Eur J Immunol 29, 2759–68 (1999).

    Article  PubMed  Google Scholar 

  9. Bundle DR, Eichler E, Gidney MA, Meldal M, Ragauskas A, Sigurskjold BW, Sinnott B, Watson DC, Yaguchi M, Young NM, Molecular recognition of a Salmonella trisaccharide epitope by monoclonal antibody Se155-4, Biochemistry 33, 5172–82 (1994).

    PubMed  Google Scholar 

  10. Stoffer B, Aleshin AE, Firsov LM, Svensson B, Honzatko RB, Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: Dual conformations for extended inhibitors bound to the active site of glucoamylase, FEBS Lett 358, 57–61 (1995).

    PubMed  Google Scholar 

  11. Komba S, Werdelin O, Jensen T, Meldal M, Synthesis of tumor associated sialyl-T-glycopeptides and their immunogenicity, JPept Sci 6, 585–93 (2000).

    Google Scholar 

  12. Frische K, Meldal M, Werdelin O, Mouritsen S, Jensen T, Galli-Stampino L, Bock K, Multiple column synthesis of a library of T-cell stimulating Tn-antigenic glycopeptide analogues for the molecular characterization of T-cell-glycan specificity, J Pept Sci 2, 212–22 (1996).

    PubMed  Google Scholar 

  13. Letourneur F, Malissen B, Derivation of a T cell hybridoma variant deprived of functional T cell receptor alpha and beta chain transcripts reveals a nonfunctional alpha-mRNA of BW5147 origin, Eur J Immunol 19, 2269–74 (1989).

    PubMed  Google Scholar 

  14. White J, Kappler J, Marrack P, Production and characterization of T cell hybridomas, Methods Mol Biol 134, 185–93 (2000).

    PubMed  Google Scholar 

  15. White J, Blackman M, Bill J, Kappler J, Marrack P, Gold DP, Born W, Two better cell lines for making hybridomas expressing specific T cell receptors, J Immunol 143, 1822–5 (1989).

    PubMed  Google Scholar 

  16. Zisman E, Sela M, Ben Nun A, Mozes E, Dichotomy between the T and the B cell epitopes of the synthetic polypeptide (T,G)-A—L, Eur J Immunol 24, 2497–505 (1994).

    PubMed  Google Scholar 

  17. Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P, The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments, Proc Natl Acad Sci USA 90, 4319–23 (1993).

    PubMed  Google Scholar 

  18. Bassam BJ, Caetano-Anolles G, Automated “hot start” PCR using mineral oil and paraffin wax, Biotechniques 14, 30–4 (1993).

    PubMed  Google Scholar 

  19. Arden B, Clark SP, Kabelitz D, Mak TW, Human T-cell receptor variable gene segment families, Immunogenetics 42, 455–500 (1995).

    PubMed  Google Scholar 

  20. Koop BF, Wilson RK, Wang K, Vernooij B, Zallwer D, Kuo CL, Seto DT, Toda M, Hood L, Organization, structure, and function of 95 kb of DNA spanning the murine T-cell receptor C alpha/ C delta region, Genomics 13, 1209–30 (1992).

    PubMed  Google Scholar 

  21. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y, Ligand recognition by alpha beta T cell receptors, Annu Rev Immunol 16, 523–44 (1998).

    PubMed  Google Scholar 

  22. Garcia KC, Teyton L, Wilson IA, Structural basis of T cell recognition, Annu Rev Immunol 17, 369–97 (1999).

    PubMed  Google Scholar 

  23. Kalmar B, Alder H, Lublin FD, Characteristics of the T lymphocytes involved in experimental allergic encephalomyelitis, J Neuroimmunol 61, 107–116 (1995).

    PubMed  Google Scholar 

  24. Matsumoto Y, Characterization of T cell receptor (TCR) of organspecific autoimmune disease-inducing T cells and TCR-based immunotherapy with DNA vaccines, J Neuroimmunol 110, 1–12 (2000).

    PubMed  Google Scholar 

  25. Engel I, Hedrick SM, Site-directed mutations in theVDJ junctional region of a T cell receptor beta chain cause changes in antigenic peptide recognition, Cell 54, 473–84 (1988).

    PubMed  Google Scholar 

  26. Hedrick SM, Engel I, McElligott DL, Fink PJ, Hsu ML, Hansburg D, Matis LA, Selection of amino acid sequences in the beta chain of the T cell antigen receptor, Science 239, 1541–4 (1988).

    PubMed  Google Scholar 

  27. Danska JS, Livingstone AM, Paragas V, Ishihara T, Fathman CG, The presumptive CDR3 regions of both T cell receptor alpha and beta chains determine T cell specificity for myoglobin peptides, J Exp Med 172, 27–33 (1990).

    PubMed  Google Scholar 

  28. Lai MZ, Jang YJ, Chen LK, Gefter ML, Restricted V-(D)-J junctional regions in the T cell response to lambda-repressor. Identification of residues critical for antigen recognition, J Immunol 144, 4851–6 (1990).

    PubMed  Google Scholar 

  29. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A, Expression of two T cell receptor alpha chains: Dual receptor T cells, Science 262, 422–4 (1993).

    PubMed  Google Scholar 

  30. Heath WR, Carbone FR, Bertolino P, Kelly J, Cose S, Miller JFAP, Expression of two T cell receptor α chains on the surface of normal murine T cells, Eur J Immunol 25, 1617–23 (1995); ain transgenics, Nature 355, 224–30 (1992).

    PubMed  Google Scholar 

  31. Michaelsson E, Malmstrom V, Reis S, Engstrom A, Burkhardt H, Holmdahl R, T cell recognition of carbohydrates on type II collagen, J Exp Med 180, 745–9 (1994).

    PubMed  Google Scholar 

  32. Michaelsson E, Broddefalk J, Engstrom A, Kihlberg J, Holmdahl R, Antigen processing and presentation of a naturally glycosylated protein elicits major histocompatibility complex class II-restricted, carbohydrate-specific T cells, Eur J Immunol 26, 1906–10 (1996).

    PubMed  Google Scholar 

  33. Deck B, Elofsson M, Kihlberg J, Unanue ER, Specificity of glycopeptide-specific T cells, J Immunol 155, 1074–8 (1995).

    PubMed  Google Scholar 

  34. Deck MB, Sjolin P, Unanue ER, Kihlberg J, MHC-restricted, glycopeptide-specific T cells show specificity for both carbohydrate and peptide residues, J Immunol 162, 4740–4 (1999).

    PubMed  Google Scholar 

  35. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger J, Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles, J Exp Med 178, 27–47 (1993).

    PubMed  Google Scholar 

  36. Chicz RM, Lane WS, Robinson RA, Trucco M, Strominger JL, Gorga JC, Self-peptides bound to the type I diabetes associated class II MHC molecules HLA-DQ1 and HLA-DQ8, Int Immunol 6, 1639–49 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teis Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gad, M., Werdelin, O., Meldal, M. et al. Characterization of T cell hybridomas raised against a glycopeptide containing the tumor-associated T antigen, (βGal (1–3) αGalNAc-O/Ser). Glycoconj J 19, 59–65 (2002). https://doi.org/10.1023/A:1022537031617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022537031617

Navigation