Skip to main content
Log in

Influence of Induced Plant Defenses in Cotton and Tomato on the Efficacy of Baculoviruses on Noctuid Larvae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Constitutive phenolase activity of plants has a profound ability to modulate disease in insects caused by baculoviruses. We investigated the influence of damage-induced plant phenolic oxidases in cotton and tomato on mortality caused by two different baculoviruses in their respective hosts, Heliothis virescens (L.) and Helicoverpa zea (Boddie). For both plant species, peroxidase (POD) and phenolic levels were predictive of larval mortality caused by baculoviruses. The higher the POD activity, the lower the mortality in both hosts. Different classes of phenolics (e.g., monohydroxyphenolics vs. catecholic phenolics) in combination with POD activity had different effects on the severity of viral disease depending upon mixture, which implies that viral efficacy is predictable only if total chemical content of the plants is specified. Inhibition of baculoviral disease by plant phenolase activity has potential implications for the compatibility of baculoviruses with induced resistance in IPM programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmad, S. 1995. Oxidative Stress and Antioxidant Defenses in Biology. Chapman & Hall, New York.

    Google Scholar 

  • Ayers, M. D., Howard, S. C., Kuzio, J., Lopezferber, M., and Possee, R. D. 1994. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605.

    Article  PubMed  Google Scholar 

  • Baldwin, I. T. 1994. Chemical changes rapidly induced by folivory, pp. 1–23, in E. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Barbosa, P. 1988. Natural enemies and herbivore-plant interactions: Influence of plant allelochemicals and host specificity, pp. 201–229, in P. Barbosa and D. K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Berenbaum, M. R. 1988. Allelochemicals in insect-microbe-plant interactions: Influence of plant allelochemicals and host specificity, pp. 201–229, in P. Barbosa and D. K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Bi, J. L., and Felton, G. W. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of oxidative stress. J. Chem. Ecol. 21(10):1511–1530.

    Google Scholar 

  • Bi, J. L., Murphy, J. B., and Felton, G. W. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23:95–115.

    Google Scholar 

  • Bloem, K. A., Kelley, K. C., and Duffey, S. S. 1989. Differential effect of tomatine and its alleviation by cholesterol on larval growth and efficiency of food utilization in Heliothis zea and Spodoptera exigua. J. Chem. Ecol. 15:387–398.

    Google Scholar 

  • Bozer, S. F., Traugott, M. S., and Stamp, N. E. 1996. Combined effects of allelochemical-fed and scarce prey on the generalist insect predator Podisus maculiventris. Ecol. Entomol. 21:328–334.

    Google Scholar 

  • Broadway, R., Duffey, S. S., Pearce, G., and Ryan, C. A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects. Entomol. Exp. Appl. 41:33–38.

    Google Scholar 

  • Butt, V. S. 1981. Direct oxidases and related enzymes, pp. 81–123, in P. K. Stumpf and E. E. Conn (eds.). The Biochemistry of Plants: A comprehensive Treatise. Academic Press, New York.

    Google Scholar 

  • Butt, V. S., and Lamb, J. C. 1981. Oxygenases and the metabolism of plant products, pp. 627–655, in P. K. Stumpf and E. E. Conn. (eds.). The Biochemistry of Plants: A Comprehensive Treatise—Secondary Plant Products. Academic Press, New York.

    Google Scholar 

  • Caldwell, M. M., Camp, L. B., Warner, C. W., and Flint, S. D. 1986. Action spectra and their key role in assessing biological consequences of solar UV-B radiation damage, pp. 87–111, in R. C. Worrest and M. M. Caldwell (eds.). Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Springer-Verlag, New York.

    Google Scholar 

  • Campbell, B. C., and Duffey, S. S. 1979. Tomatine and parasitic wasps: Potential incompatibility of plant-antibiosis with biological control. Science 205:700–702.

    Google Scholar 

  • Campbell, B. C., and Duffey, S. S. 1981. Alleviation of α-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea. J. Chem. Ecol. 7:927–946.

    Google Scholar 

  • Collett, D. 1994. Modelling Survival Data in Medical Research. Chapman and Hall, London.

    Google Scholar 

  • Conconi, A., Smerdon, M. J., Howe, G. A., and Ryan, C. A. 1996. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829.

    PubMed  Google Scholar 

  • Duffey, S. S., and Bloem, K. A. 1986. Plant defense/herbivore/parasite interactions and biological control, pp. 135–183, in M. Kogan (ed.). Ecological Theory and IPM Practice. John Wiley & Sons, London.

    Google Scholar 

  • Duffey, S. S., and Felton, G. W. 1989. Role of plant enzymes in resistance to insects, pp. 289–313, in J. R. Whitaker and P. E. Sonnet (eds.). Biocatalysis in Agricultural Biotechnology. ACS Symposium Series 389. American Chemical Society, Washington, DC.

    Google Scholar 

  • Duffey, S. S., and Felton, G. W. 1991. Enzymatic antinutritive defenses of the tomato plant against insects, pp. 167–197, in P. A. Hedin (ed.). Naturally Occurring Pest Bioregulators. ACS Symposium Series 449, American Chemical Society, Washington, DC.

    Google Scholar 

  • Duffey, S. S., and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.

    Google Scholar 

  • Duffey, S. S., Bloem, K. A., and Campbell, B. C. 1986. Consequences of sequestration of plant natural products in plant-insect-parasitoid interactions, pp. 31–60, in D. J. Boethel and R. D. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood Limited, New York.

    Google Scholar 

  • Duffey, S. S., Hoover, K., Bonning, B. C., and Hammock, B. D. 1995. The impact of hostplant on the efficacy of baculoviruses, pp. 137–275, in M. Roe and R. Kuhr (eds.). Reviews in Pesticide Toxicology. CTI Toxicology Communications, Raleigh, North Carolina.

    Google Scholar 

  • Fazal, F., Rahman, A., Greensill, J., Ainley, K., Hadi, S. M., and Parish, J. H. 1990. Strand scission in DNA by quercetin and Cu(II): Identification of free radical intermediates and the biological consequences of scission. Carcinogenesis 11:2005–2008.

    PubMed  Google Scholar 

  • Felton, G. W. 1995. Oxidative stress of vertebrates and invertebrates, pp. 356–434, in S. Ahmad (ed.). Oxidative Stress and Antioxidant Defenses in Biology. Chapman & Hall, New York.

    Google Scholar 

  • Felton, G. W., and Duffey, S. S. 1990. Inactivation of a baculovirus by quinones formed in insect-damaged plant tissue. J. Chem. Ecol. 16:1211–1236.

    Google Scholar 

  • Felton, G. W., and Summers, C. B. 1993. Potential role of ascorbate oxidase as a plant defense protein against insect herbivory. J. Chem. Ecol. 19:1553–1568.

    Google Scholar 

  • Felton, G. W., Duffey, S. S., Vail, P. V., Kaya, H. K., and Manning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13:947–957.

    Google Scholar 

  • Felton, G. W., Donato, K., Del Vecchio, R. J., and Duffey, S. S. 1989. Activation of plant polyphenol oxidases by insect feeding reduces the nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2694.

    Google Scholar 

  • Felton, G. W., Bi, J. L., Summers, C. B., Mueller, A. J., and Duffey, S. S. 1994. Potential role of lipoxygenase in defense against insect herbivory. J. Chem. Ecol. 20:651–666.

    Google Scholar 

  • Golan-Goldhirsh, A., and Whitaker, J. R. 1984. Relation between structure of polyphenol oxidase and prevention of browning, pp. 437–456, in M. Friedman (ed.). Nutritional and Toxicological Aspects of Food Safety. Plenum Press, New York.

    Google Scholar 

  • Hoover, K., Schultz, C. M., Lane, S. S., Bonning, B. C., McCutchen, B. F., Duffey, S. S., and Hammock, B. D. 1995. Reduction in damage to cotton plants by a recombinant baculovirus that knocks moribund larvae of Heliothis virescens off the plant. Biol. Control 5:419–426.

    Google Scholar 

  • Hoover, K., Yee, J. L., Schultz, C. M., Rocke, D. M., Hammock, B. D., and Duffey, S. S. 1998. Effects of plant identity and chemical constituents on the efficacy of a baculovirus against Heliothis virescens. J. Chem. Ecol. 24:221–252.

    Google Scholar 

  • Huang, M.-T., Ho, C.-T., and Lee, C. Y. 1992. Phenolic Compounds in Food and Their Effects on Health II: Antioxidants and cancer prevention. American Chemical Society, Washington, DC, 402 pp.

    Google Scholar 

  • Hunter, M. D., and Schultz, J. C. 1993. Induced plant defenses breached? Phytochemical induction protects and herbivore from disease. Oecologia 94:195–203.

    Google Scholar 

  • Jones, C. G. 1984. Microorganisms as mediators of plant resource exploitation by insect herbivores, pp. 53–99, in P. W. Price, C. N. Slobodchikoff and W. S. Gaud (eds.). Novel Approaches to Interactive Systems. John Wiley & Sons, New York.

    Google Scholar 

  • Kalbfleisch, J. D., and Prentice, R. L. 1980. The Statistical Analysis of Failure Time Data. Wiley, New York.

    Google Scholar 

  • Karban, R., and English-Loeb, G. M. 1988. Effects of herbivory and plant conditioning on the population dynamics of spider mites. Exp. Appl. Acarol. 4:225–246.

    Google Scholar 

  • Karban, R., and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Entomol. 20:331–348.

    Google Scholar 

  • Mayer, A. M. 1987. Polyphenol oxidases in plants-recent progress. Phytochemistry 26:11–20.

    Article  Google Scholar 

  • McClure, J. W. 1975. Physiology and functions of flavonoids, pp. 970–1055, in J. B. Harborne, T. J. Mabry and H. Mabry (eds.). The Flavonoids. Academic Press, New York.

    Google Scholar 

  • McEvily, A. J., Iyengar, R., and Gross, A. T. 1992. Inhibition of polyphenol oxidase by phenolic compounds, pp. 318–325. in C.-T. Ho, C. Y. Lee and M.-T. Huang (eds.). Phenolic Compounds in Food and Their Effects on Health: Analysis, Occurrence, and Chemistry. ACS Symposium Series 506, American Chemical Society, Washington, DC.

    Google Scholar 

  • Mucsi, I., Beladi, I., Pusztai, R., Bakay, M., and Gabor, M. 1977. Antiviral effect of flavonoids, in L. Farkas, M. Gabor and F. Kallay (eds.). Flavonoids and Bioflavonoids-Current Research Trends. Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Price, J. P., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. System. 11:41–65.

    Google Scholar 

  • Price, P. W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels, pp. 11–30, in D. J. Boethel and R. D. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood Limited, New York.

    Google Scholar 

  • Robak, J., and Gryglewski, R. J. 1988. Flavonoids are scavengers of superoxide anions. J. Biochem. Pharmacol. 37:837–841.

    Google Scholar 

  • Robinson, D. S. 1991. Peroxidases and catalases in foods, pp. 1–47, in D. S. Robinson and N. A. M. Eskin (eds.). Oxidative Enzymes in Foods. Elsevier Applied Science, London.

    Google Scholar 

  • Ryan, J. D., Gregory, P., and Tingey, W. M. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21(8):1185–1187.

    Google Scholar 

  • Singleton, V. L., and Rossi, J. A., Jr. 1965. Colorimetry of total phenolics with phosphomolyb-dicphosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144–158.

    Google Scholar 

  • Stamp, N., Yang, Y., and Osier, T. 1997. Response of an insect predator to prey fed multiple allelochemicals under representative thermal regimes. Ecology 78:203–214.

    Google Scholar 

  • Steel, R. G. D., and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill, New York, 633 pp.

    Google Scholar 

  • Stout, M. J., Workman, K. V., and Duffey, S. S. 1994. Differential induction of tomato foliar proteins by arthropod herbivores. J. Chem. Ecol. 20:2575–2594.

    Google Scholar 

  • Summers, C. B., and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant antiherbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Google Scholar 

  • Tallamy, D. W., and Raupp, M. J. (eds.). 1991. Phytochemical Induction by Herbivores. John Wiley & Sons, New York.

    Google Scholar 

  • Traugott, M., and Stamp, N. 1997. Effects of chlorogenic acid-and tomatine-fed caterpillars on performance of an insect predator. Oecologia 109:265–272.

    Google Scholar 

  • Wolfson, J. L. 1991. The effects of induced plant proteinase inhibitors on herbivorous insects, pp. 223–243, in D. W. Tallamy and M. J. Raupp. (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, K., Stout, M.J., Alaniz, S.A. et al. Influence of Induced Plant Defenses in Cotton and Tomato on the Efficacy of Baculoviruses on Noctuid Larvae. J Chem Ecol 24, 253–271 (1998). https://doi.org/10.1023/A:1022528324344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022528324344

Navigation