Skip to main content

Thermodynamic Properties of Ammonia–Water Mixtures for Power Cycles

Abstract

Power cycles with ammonia–water mixtures as working fluids have been shown to reach higher thermal efficiencies than the traditional steam turbine (Rankine) cycle with water as the working fluid. Different correlations for the thermo-dynamic properties of ammonia–water mixtures have been used in studies of ammonia–water mixture cycles described in the literature. Four of these correlations are compared in this paper. The differences in thermal efficiencies for a bottoming Kalina cycle when these four property correlations are used are in the range 0.5 to 3.3%. The properties for saturated liquid and vapor according to three of the correlations and available experimental data are also compared at high pressures and temperatures [up to 20 MPa and 337°C (610 K)]. The difference in saturation temperature for the different correlations is up to 20%, and the difference in saturation enthalpy is as high as 100% when the pressure is 20 MPa.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. A. Kalina, ASME AES 25:41 (1991).

    Google Scholar 

  2. E. Olsson, E. Thorin, C. Dejfors, and G. Svedberg, in Proceedings of the Florence World Energy Research Symposium, FLOWERS'94, (Florence, Italy, 1994), p. 39.

  3. L. Lazzeri, F. Diotti, M. Bruzzone, and M. Scala, in Proceedings of the American Power Conference, Vol. 57–1 (Illinois Inst. of Technology, Chicago, 1995), p. 370.

    Google Scholar 

  4. Y. M. El-Sayed and M. Tribus, ASME AES 1:89 (1985).

    Google Scholar 

  5. O. M. Ibrahim and S. A. Klein, ASHRAE Trans. 1:1495 (1993).

    Google Scholar 

  6. Y. M. Park, A Generalized Equation of State Approach to the Thermodynamic Properties of Ammonia-Water Mixtures with Applications, 3, Ph. D. Dissertation (University of Michigan, UMI, Ann Abor, 1988).

    Google Scholar 

  7. S. S. Stecco and U. Desideri, ASME paper 89-GT-149 (1989).

  8. D. Y. Peng and D. B. Robinson, in Thermodynamics of Aqueous Systems with Industrial Applications, ACS Symp. Ser. 133 (ACS, Washington, DC, 1980).

    Google Scholar 

  9. S. Skogestad, Fluid Phase Equil. 13:179 (1983).

    Article  Google Scholar 

  10. H. Renon, J. L. Guillevic, D. Richon, J. Boston, and H. Britt, Int. J. Refrig. 9:70 (1986).

    Article  Google Scholar 

  11. M. Iseli,Experimentelle und Thermodynamische Untersuchung des Siedegleichgewichtes des Systems NH3-H2O bei Hohen Drücken, Diss ETH Nr 7743, (ETH, Zürich 1985).

    Google Scholar 

  12. R. Stryjek and J. H. Vera, Can. J. Chem. Eng. 64:323 (1986).

    Google Scholar 

  13. H. Huang, Fluid Phase Equil. 58:93 (1990).

    Article  Google Scholar 

  14. T. M. Smolen, D. B. Manley, and B. E. Poling, J. Chem. Eng. Data 36:202 (1991).

    Google Scholar 

  15. M. Moshfeghian, A. Shariat, and R. N. Maddox, Fluid Phase Equil. 80:33 (1992).

    Article  Google Scholar 

  16. R. Peters and J. U. Keller, DKV-Tagungsber, 20th 2:183 (1993).

    Google Scholar 

  17. J. Vidal, Fluid Phase Equil. 13:15 (1983).

    Article  Google Scholar 

  18. P. C. Gillespie, W. V. Wilding, and G. M. Wilson, AIChE Symp. Ser. 83(254):97 (1987).

    Google Scholar 

  19. S. S. H. Rizvi, Measurements and Correlation of Ammonia-Water Equilibrium Data, Ph.D. dissertation (University of Calgary, Calgary, 1985).

    Google Scholar 

  20. Z. Duan, N. Møller, and J. H. Weare, J. Sol. Chem. 25(1):43 (1996).

    Google Scholar 

  21. F. Harms-Watzenberg, Messungen und Korrelationen der Thermodynamischen Eigenshaften von Wasser-Ammoniak-Gemischen, Fortschr. Ber. VDI, Reihe 3, Nr. 380 (VDI-Verlag, Düsseldorf, 1995).

    Google Scholar 

  22. T. J. Edward, J. Newman, and J. M. Prausnitz, Ind. Eng. Chem. Fundam. 17(4):264 (1978).

    Google Scholar 

  23. S. C. G. Schulz, Int. Cong. Refrig. Proc. 2:431 (1973).

    Google Scholar 

  24. D. A. Kouremenos and E. D. Rogdakis, ASME AES 19:13 (1990).

    Google Scholar 

  25. B. Ziegler and Ch. Trepp, Int., J. Refrig. 7(2):101 (1984).

    Google Scholar 

  26. A. Kalina, M. Tribus, and Y. M. El-Sayed, ASME paper 86-WA/HT-54 (1986).

  27. Y. Ikegami, T. Nishida, M. Uto, and H. Uehara, in The 13th Japan Symposium on Thermophysical Properties (1992), p. 213.

  28. D. G. Friend, A. L. Olson, and A. Nowarski, in Proceedings of the 12th International Conference on the Properties of Water and Steam (Orlando, FL, 1994).

  29. P. C. Jain and G. K. Gable, ASHRAE Trans. 77:149 (1971).

    Google Scholar 

  30. J. Paték and J. Klomfar, Int. J. Refrig. 18(4):228 (1995).

    Article  Google Scholar 

  31. V. Abovsky, Fluid Phase Equil. 116:170 (1996).

    Article  Google Scholar 

  32. S. Postma, Rec. Trav. Chim. 39:515 (1920).

    Google Scholar 

  33. D. S. Tsiklis, L. R. Linshits, and N. P. Goryunova, Russ. J. Phys. Chem. 39(12):1590 (1965).

    Google Scholar 

  34. B. H. Jennings, Proc. Int. Cong. Refrig. 12(2):329 (1967).

    Google Scholar 

  35. C. L. Sassen, R. A. C. van Kwartel, H. J. van der Kooi, and J. de Swaan Arons, J. Chem. Eng. Data 35:140 (1990).

    Google Scholar 

  36. R. A. Macriss, B. E. Eakin, R. T. Ellington, and J. Huebler, Physical and Thermodynamic Properties of Ammonia-Water Mixtures, IGT Research Bulletin No34, (IGT, Chicago, 1964).

    Google Scholar 

  37. Y. M. El-Sayed and M. Tribus, ASME AES 1:97 (1985).

    Google Scholar 

  38. C. H. Marston, J. Eng. Gas Turbines Power 112:107 (1990).

    Google Scholar 

  39. Y. M. Park and R. E. Sonntag, Int. J. Energy Res. 14:153 (1990).

    Google Scholar 

  40. N. Yoshizwa and M. Uematsu, Netsu Bussei 6(4):240 (1992).

    Google Scholar 

  41. Y. M. Park and R. E. Sonntag, ASHRAE Trans. 1:150 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thorin, E., Dejfors, C. & Svedberg, G. Thermodynamic Properties of Ammonia–Water Mixtures for Power Cycles. International Journal of Thermophysics 19, 501–510 (1998). https://doi.org/10.1023/A:1022525813769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022525813769

  • ammonia–water mixture
  • Kalina cycle
  • power cycle
  • thermo-dynamic properties