Skip to main content
Log in

Modeling the Transmembrane Arrangement of the Uncoupling Protein UCP1 and Topological Considerations of the Nucleotide-Binding Site

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The uncoupling protein from brown adipose tissue (UCP1) is a mitochondrial proton transporter whose activity is inhibited by purine nucleotides. UCP1, like the other members of the mitochondrial transporter superfamily, is an homodimer and each subunit contains six transmembrane segments. In an attempt to understand the structural elements that are important for nucleotide binding, a model for the transmembrane arrangement of UCP1 has been built by computational methods. Biochemical and sequence analysis considerations are taken as constraints. The main features of the model include the following: (i) the six transmembrane α-helices (TMHs) associate to form an antiparallel helix bundle; (ii) TMHs have an amphiphilic nature and thus the hydrophobic and variable residues face the lipid bilayer; (iii) matrix loops do not penetrate in the core of the bundle; and (iv) the polar core constitutes the translocation pathway. Photoaffinity labeling and mutagenesis studies have identified several UCP1 regions that interact with the nucleotide. We present a model where the nucleotide binds deep inside the bundle core. The purine ring interacts with the matrix loops while the polyphosphate chain is stabilized through interactions with essential Arg residues in the TMH and whose side chains face the core of the helix bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature 370, 621–628.

    Google Scholar 

  • Anderson, P. A. V., and Greenberg, R. M. (2001). Comp. Biochem. Physiol. B 129, 17–28.

    Google Scholar 

  • Aquila, H., Link, T. A., and Klingenberg, M. (1987). FEBS Lett. 212, 1–9.

    Google Scholar 

  • Arechaga, I., Ledesma, A., and Rial, E. (2001). IUBMB Life 52, 165–173.

    Google Scholar 

  • Berry, M. B., Meador, B., Bilderback, T., Liang, P., Glasser, M., and Phillips, G. N., Jr. (1994). Proteins: Struct., Funct., Genet. 19, 183–198.

    Google Scholar 

  • Bienengraeber, M., Echtay, K. S., and Klingenberg, M. (1998). Biochemistry 37, 3–8.

    Google Scholar 

  • Bogner, W., Aquila, H., and Klingenberg, M. (1986). Eur. J. Biochem. 161, 611–620.

    Google Scholar 

  • Boss, O., Hagen, T., and Lowell, B. B. (2000). Diabetes 49, 143–156.

    Google Scholar 

  • Bowie, J. U. (1997). J. Mol. Biol. 272, 780–789.

    Google Scholar 

  • Brandolin, G., Boulay, F., Dalbon, P., and Vignais, P. V. (1989). Biochemistry 28, 1093–1100.

    Google Scholar 

  • Brown, G. C., Nicholls, D. G., and Cooper, C.E. (Eds.). (1999). Biochem. Soc. Symp. 66. Portland Press, London.

    Google Scholar 

  • Brustovetsky, N., and Klingenberg, M. (1996). Biochemistry 35, 8483–8488.

    Google Scholar 

  • Cammack, J. N., and Schwartz, E. A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 723–727.

    Google Scholar 

  • Costantini, P., Belzacq, A. S., Vieira, H. L. A., Larochette, N., de Pablo, M. A., Zamzami, N., Susin, S. A., Brenner, C., and Kroemer, G. (2000). Oncogene 19, 307–314.

    Google Scholar 

  • Chothia, C., Levitt, M., and Richardson, D. (1981). J. Mol. Biol. 145, 215–250.

    Google Scholar 

  • Crompton, M., Ellinger, H., and Costi, A. (1988). Biochem. J. 255, 357–360

    Google Scholar 

  • Dalbon, P., Brandolin, G., Boulay, F., Hoppe, J., and Vignais, P.V. (1988). Biochemistry 27, 5141–5149.

    Google Scholar 

  • Dianoux, A. C., Noël, F., Fiore, C., Trézéguet, V., Kieffer, S., Jaquinod, M., Lauquin, G. J. M., and Brandolin, G. (2000). Biochemistry 39, 11477–11487.

    Google Scholar 

  • Dierks, T., Salentin, A., and Krämer, R. (1990). Biochim. Biophys. Acta 1028, 281–288.

    Google Scholar 

  • Dierks, T., Stappen, R., and Krämer, R. (1994). In Molecular Biology of Mitochondrial Transport Systems (Forte, M., and Colombini, M., eds.), Springer-Verlag, Berlin, pp. 117–129.

    Google Scholar 

  • Donelly, D., Overington, J. P., Ruffle, S. V., Nugent, J. H., and Blundell, T. L. (1993). Protein Sci. 2, 55–70.

    Google Scholar 

  • Echtay K. S., Bienengraeber, M., and Klingenberg, M. (2001). Biochemistry 40, 5243–5248.

    Google Scholar 

  • Echtay, K. S., Bienengraeber, M., Winkler, E., and Klingenberg, M. (1998). J. Biol. Chem. 273, 24368–24374.

    Google Scholar 

  • Echtay, K.S., Winkler, E., Bienengraeber, M., and Klingenberg, M. (2000). Biochemistry 39, 3311–3317.

    Google Scholar 

  • Feil, S., and Rafael, J., (1994). Eur. J. Biochem. 219, 681–690.

    Google Scholar 

  • Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986). Proc. Natl. Acad. Sci. U.S.A. 83, 907–911.

    Google Scholar 

  • González-Barroso, M. M., Fleury, C., Jiménez, M. A., Sanz, J. M., Romero, A., Bouillaud, F., and Rial, E. (1999). J. Mol. Biol. 292, 137–149.

    Google Scholar 

  • González-Barroso, M. M., Fleury, C., Levi-Meyrueis, C., Zaragoza, P., Bouillaud, F., and Rial, E. (1997). Biochemistry 36, 10930–10935.

    Google Scholar 

  • Hagen, T., Zhang, C., Vianna, C. R., and Lowell, B. B. (2000). Biochemistry 39, 5845–5851.

    Google Scholar 

  • Halestrap, A. P., and Davidson, A. M. (1990). Biochem. J. 268, 153–160.

    Google Scholar 

  • Halestrap, A. P., McStay, G. P., and Clarke, S. J. (2002). Biochimie 84, 153–166.

    Google Scholar 

  • Halestrap, A. P., Woodfield, K. Y., and Connern, C. P. (1997). J. Biol. Chem. 272, 3346–3354.

    Google Scholar 

  • Hashimoto, M., Majima, E., Goto, S., Shinohara Y., and Terada, H. (1999). Biochemistry 38, 1050–1056.

    Google Scholar 

  • Hatanaka, T., Hashimoto, M., Majima, E., Shinohara, Y., and Terada, H. (1999). Biochem Biophys Res. Commun. 262, 726–730.

    Google Scholar 

  • Hatanaka, T., Kihira, Y., Shinohara, Y., Majima, E., and Terada, H. (2001). Biochem. Biophys. Res. Commun. 286, 936–942. 486 Ledesma, Garc´?a de Lacoba, Arechaga, and Rial

    Google Scholar 

  • Heaton, G. M., and Nicholls, D. G. (1977). Biochem. Soc. Trans. 5, 210–212.

    Google Scholar 

  • Heaton, G. M., Wagenvoord, R. J., Kemp, A., and Nicholls, D. G. (1978). Eur. J. Biochem. 82,515–521.

    Google Scholar 

  • Heidkämper, D., Müller, V., Nelson, D. R., and Klingenberg, M. (1996). Biochemistry 35, 16144–16152.

    Google Scholar 

  • Herick, K., Krämer, R., and Lühring, H. (1997). Biochim. Biophys. Acta 1321, 207–220.

    Google Scholar 

  • Hernándezk, J. A. (2001). J. Membr. Biol. 180, 177–185.

    Google Scholar 

  • Huang, S. G., and Klingenberg, M. (1995). Biochemistry 34, 349–360.

    Google Scholar 

  • Huang, S. G., and Klingenberg, M. (1996). Biochemistry 35, 16806–16814.

    Google Scholar 

  • Huang, S. G., Lin, Q. S., and Klingenberg, M. (1998). J. Biol. Chem. 273, 859–864.

    Google Scholar 

  • Huang, S. G., Odoy, S., and Klingenberg, M. (2001). Arch. Biochem. Biophys. 394, 67–75.

    Google Scholar 

  • Huber, T., Klingenberg, M., and Beyer, K. (1999). Biochemistry 38, 762–769.

    Google Scholar 

  • Indivieri, C., Tonazzi, A., Dierks, T., Krämer, R., and Palmieri, F. (1992). Biochim. Biophys. Acta 1140, 53–58.

    Google Scholar 

  • Jaburek, M., Varecha, M., Gimeno, R. E., Dembski, M., Jezek, P., Zhang, M., Burn, P., Tartaglia, L. A., and Garlid, K. D. (1999). J. Biol. Chem. 274, 26003–26007.

    Google Scholar 

  • Jayasinghe, S., Hristova, K., and White, S. H. (2001). J. Mol. Biol. 312, 927–934.

    Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., and Holmes, K. C. (1990). Nature 347, 37–44.

    Google Scholar 

  • Killian, J. A., and van Heijne, G. (2000). Trends Biochem. Sci. 25, 429–434.

    Google Scholar 

  • Klingenberg, M. (1988). Biochemistry 27, 781–791.

    Google Scholar 

  • Klingenberg, M. (1991). A Study of Enzymes: Mechanism of Enzyme Action (Kuby, S. A., ed.), CRC Press, Boca Raton, pp. 367–390.

    Google Scholar 

  • Klingenberg, M., and Appel, M. (1989). Eur. J. Biochem. 180, 123–131.

    Google Scholar 

  • Klingenberg, M., and Echtay, K. S. (2001). Biochim. Biophys. Acta 1504, 128–143.

    Google Scholar 

  • Klingenberg, M., Mayer, I., and Dahms, A. S. (1984). Biochemistry 23, 2442–2449.

    Google Scholar 

  • Krämer, R. (1994). Biochim. Biophys. Acta 1185, 1–34.

    Google Scholar 

  • Läuger, P. (1987). Physiol. Rev. 67, 1296–1331.

    Google Scholar 

  • Lin, C. S., Hackenberg, H., and Klingenberg, M. (1980). FEBS Lett. 113, 304–306.

    Google Scholar 

  • Lin, C. S., and Klingenberg, M. (1982). Biochemistry 21, 2950–2956.

    Google Scholar 

  • Majima, E., Ikawa, K., Takeda, M., Hashimoto, M., Shinohara, Y., and Terada, H. (1995). J. Biol. Chem. 270, 29548–29554.

    Google Scholar 

  • Majima, E., Ishida, M., Miki, S., Shinohara, Y., and Terada, H. (2001). J. Biol. Chem. 276, 9792–9799.

    Google Scholar 

  • Majima, E., Koike, H., Hong, Y. M., Shinohara, Y., and Terada, H. (1993). J. Biol. Chem. 268, 22181–22187.

    Google Scholar 

  • Majima, E., Shinohara, Y., Yamaguchi, N., Hong, Y. M., and Terada, H. (1994). Biochemistry 33, 9530–9536.

    Google Scholar 

  • Majima, E., Yamaguchi, N., Chuman, H., Shinohara, Y., Ishida, M., Goto, S., and Terada, H. (1998). Biochemistry 37, 424–432.

    Google Scholar 

  • Mayinger, P., and Klingenberg, M. (1992). Biochemistry 31, 10536–10543.

    Google Scholar 

  • Mayinger, P., Winkler, E., and Klingenberg, M. (1989). FEBS Lett. 244, 421–426.

    Google Scholar 

  • Menz, R. I., Walker, J. E., and Leslie, A. G.W. (2001). Cell 106, 331–341.

    Google Scholar 

  • Miroux, B., Casteilla, L., Klaus, S., Raimbault, S., Grandin, S., Clément, J. M., Ricquier, D., and Bouillaud, F. (1992). J. Biol. Chem. 267, 13603–13609.

    Google Scholar 

  • Miroux, B., Frossard, V., Raimbault, S., Ricquier, D., and Bouillaud, F. (1993). EMBO J. 12, 3739–3745.

    Google Scholar 

  • Modriansky, M., Murdza-Inglis, D., Patel, H. V., Freeman, K. B., and Garlid, K. D. (1997). J. Biol. Chem. 272, 24759–24762.

    Google Scholar 

  • Monne, M., Nilsson, I., Elofsonn, A., and von Heijne, G. (1999). J. Mol. Biol. 293, 807–814.

    Google Scholar 

  • Müller, V., Basset, G., Nelson, D. R., and Klingenberg, M. (1996). Biochemistry 35, 16132–16143.

    Google Scholar 

  • Nelson, D. R., and Douglas, M. G. (1993). J. Mol. Biol. 230, 1171–1182.

    Google Scholar 

  • Nelson, D. R., Felix, C. N., and Swanson, J. M. (1998). J. Mol. Biol. 277, 285–308.

    Google Scholar 

  • Nelson, D. R., Lawson, J. E., Klingenberg, M., and Douglas, M. (1993). J. Mol. Biol. 230, 1159–1170.

    Google Scholar 

  • Nicholls, D. G. (1976). Eur. J. Biochem. 63, 223–228.

    Google Scholar 

  • Nicholls, D. G., and Locke, R. M. (1984). Physiol. Rev. 64, 1–64

    Google Scholar 

  • Popot, J. L., and Engelman, D. M. (2000). Annu. Rev. Biochem. 69, 881–892.

    Google Scholar 

  • Quick, M., Loo, D. D. F., and Wright, E. M. (2001). J. Biol. Chem. 276, 1728–1734.

    Google Scholar 

  • Rafael, J., Pampel, X., and Wang, X. (1994). Eur. J. Biochem. 223, 971–980.

    Google Scholar 

  • Rial, E., and González-Barroso, M. M. (2001). Biochim. Biophys. Acta 1504, 70–81.

    Google Scholar 

  • Rial, E., González-Barroso, M. M., Fleury, C., Iturrizaga, S., Sanchis, D., Jiménez-Jiménez, J., Ricquier, D., Goubern, M., and Bouillaud, F. (1999). EMBO J. 18, 5827–5833.

    Google Scholar 

  • Rial, E., Muga, A., Valpuesta, J. M., Arrondo, J. L. R., and Goñi, F. M. (1990). Eur. J. Biochem. 188, 83–89.

    Google Scholar 

  • Rial, E., and Nicholls, D. G. (1986). Eur. J. Biochem. 161, 689–692.

    Google Scholar 

  • Ricquier, D., and Bouillaud, F. (2000). Biochem. J. 345, 161–179.

    Google Scholar 

  • Ross, P. D., and Subramanian, S. (1981). Biochemistry 20, 3096–3102.

    Google Scholar 

  • Rossman, M. G., Liljas, A., Brändén, C. I., and Banaszak, L. J. (1975). Enzymes 11, 61–102.

    Google Scholar 

  • Sack, S., Kull, F. J., and Mandelkow, E. (1999). Eur. J. Biochem. 262, 1–11.

    Google Scholar 

  • Saier, M. H., Jr. (2000a). Microbiol. Mol. Biol. Rev. 64, 354–411.

    Google Scholar 

  • Saier, M. H., Jr. (2000b). J. Bacteriol. 182, 5029–5035.

    Google Scholar 

  • Sansom, M. S. P., Kerr, I. D., Law, R., Davison, L., and Tieleman, D. P. (1998). Biochem. Soc. Trans. 26, 509–515.

    Google Scholar 

  • Schroers, A., Burkovsky, A., Wohlrab, H., and Krämer, R. (1998). J. Biol. Chem. 273, 14269–14276.

    Google Scholar 

  • Schwarz, M., Gross, A., Steinkamp, T., Flügge, U. I, and Wagner, R. (1994). J. Biol. Chem. 269, 29481–29489.

    Google Scholar 

  • Simon, I., Fiser, A., and Tusnády, G. A. (2001). Biochim. Biophys. Acta 1549, 123–136.

    Google Scholar 

  • Sprang, S. R. (1997). Annu. Rev. Biochem. 66, 639–678.

    Google Scholar 

  • Stappen, R., and Krämer, R. (1993). Biochim. Biophys. Acta 1149, 40–48.

    Google Scholar 

  • Stappen, R., and Krämer, R. (1994). J. Biol. Chem. 269, 11240–11246.

    Google Scholar 

  • Stuart, J. A., Cadenas, S., Jekabsons, M. B., Roussel, D., and Brand, M. D. (2001). Biochim. Biophys. Acta 1504, 144–158.

    Google Scholar 

  • Trézéguet, V., Le Saux, A., David, C., Gourdet, C., Fiore, C., Dianoux, A. C., Brandolin, G., and Lauquin, G. (2000). Biochim. Biophys. Acta 1457, 81–93.

    Google Scholar 

  • Viguera, A. R., Goñi, F. M., and Rial, E. (1992). Eur. J. Biochem. 210, 893–899.

    Google Scholar 

  • Walker, J. E. and Runswick, M. J. (1993). J. Bioenerg. Biomembr. 25, 435–446.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982). EMBO J. 8, 945–951.

    Google Scholar 

  • Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986). J. Comp. Chem. 7, 230–252.

    Google Scholar 

  • Winkler, E., and Klingenberg, M. (1992). Eur. J. Biochem. 203, 295–304.

    Google Scholar 

  • Winkler, E., Wachter, E., and Klingenberg, M. (1997). Biochemistry 36, 148–155.

    Google Scholar 

  • Winner, M. C., and White, S. H. (1992). Biophys. J. 61, 437–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Rial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledesma, A., Lacoba, M.G.d., Arechaga, I. et al. Modeling the Transmembrane Arrangement of the Uncoupling Protein UCP1 and Topological Considerations of the Nucleotide-Binding Site. J Bioenerg Biomembr 34, 473–486 (2002). https://doi.org/10.1023/A:1022522310279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022522310279

Navigation