Skip to main content
Log in

Linkage isomerism and redox properties of ruthenium–polypyridine benzotriazole complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new series of mono- and di-substituted ruthenium–polypyridine complexes of the type cis-[RuIII,II (bpy)2(L1)(L2)]n + (L1 = Cl, bta or py; L2 = bta; bpy = 2,2′-bipyridine; bta = benzotriazole; py = pyridine) has been prepared, isolated as hexafluorophosphate salts, and investigated in organic solutions by means of cyclic voltammetry and spectroelectrochemistry. The chemical oxidation of all the benzotriazole derivatives, starting from cis-[RuII(bpy)2(L1)(bta)]x (x = +1 or +2), leads essentially to N(3)-bound products, i.e., cis-[RuIII(bpy)2 (L1)(κN(3){bta})]x+1 isomers. Nevertheless, while the benzotriazole-monosubstituted species undergoes an intramolecular isomerization, κN(3) → κN(2), accompanying the electrochemical reduction centered on the metal ion, RuIII → RuII, the disubstituted derivatives do not display any spectral or electrochemical evidence of linkage isomerism. The equilibrium and kinetic constants for the isomerization were determined from the cyclic voltammograms at several scan rates, according to an electrochemical–chemical (EC) coupling scheme. The data were compared with a set of constants and parameters obtained previously for a series of ruthenium and iron complexes. The experimental results were found to be quite consistent with theoretical calculations, and reflect the importance of π-backbonding interactions in the stabilization of the metal-centered reduced state (MII) on such species with low-spin dπ6 configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Werner, Ber., 40, 765 (1907).

    Google Scholar 

  2. H.E. Toma and R.C. Rocha, Croat. Chem. Acta, 74, 499 (2001).

    Google Scholar 

  3. R.C. Rocha and H.E. Toma, Can. J. Chem., 79, 145 (2001).

    Google Scholar 

  4. R.C. Rocha and H.E. Toma, Inorg. Chem. Commun., 4, 230 (2001).

    Google Scholar 

  5. R.C. Rocha, F.N. Rein and H.E. Toma, J. Braz. Chem. Soc., 12, 234 (2001).

    Google Scholar 

  6. R.C. Rocha and H.E. Toma, Inorg. Chim. Acta, 310, 65 (2000).

    Google Scholar 

  7. R.C. Rocha, K. Araki and H.E. Toma, Inorg. Chim. Acta, 285, 197 (1999).

    Google Scholar 

  8. R.C. Rocha, K. Araki and H.E. Toma, Transition Met. Chem., 23, 13 (1998).

    Google Scholar 

  9. H.E. Toma, E. Giesbrecht and R.L.E. Rojas, J. Chem. Soc., Dalton Trans., 2469 (1985).

  10. H.E. Toma, E. Giesbrecht and R.L.E. Rojas, Can. J. Chem., 61, 2520 (1983).

    Google Scholar 

  11. R. Walker, J. Chem. Educ., 57, 789 (1980).

    Google Scholar 

  12. R.S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964).

    Google Scholar 

  13. B.P. Sullivan, D.J. Salmon and T.J. Meyer, Inorg. Chem., 17, 3334 (1978).

    Google Scholar 

  14. B.A. Moyer and T.J. Meyer, Inorg. Chem., 20, 436 (1981).

    Google Scholar 

  15. F.N. Rein, R.C. Rocha and H.E. Toma, J. Coord. Chem., 53, 99 (2001).

    Google Scholar 

  16. H.E. Toma, R.M. Serrasqueiro, R.C. Rocha, G.J.F. Demets, H. Winnischofer, K. Araki, P.E.A. Ribeiro and C.L. Donnici, J. Photochem. Photobiol. A, 135, 185 (2000).

    Google Scholar 

  17. M. Franco, K. Araki, R.C. Rocha and H.E. Toma, J. Solution Chem., 29, 667 (2000).

    Google Scholar 

  18. R.C. Rocha, PhD thesis, Universidade de Sã o Paulo, Sã o Paulo, 2000.

  19. V.R.L. Constantino, H.E. Toma, L.F.C. De Oliveira, F.N. Rein, R.C. Rocha and D.D. Silva, J. Chem. Soc., Dalton Trans., 1735 (1999).

  20. B.P. Sullivan, D. Conrad and T.J. Meyer, Inorg. Chem., 24, 3640 (1985).

    Google Scholar 

  21. D.O. Silva and H.E. Toma, Can. J. Chem., 72, 1705 (1994).

    Google Scholar 

  22. H.E. Toma and A.D.P. Alexiou, Electrochim. Acta, 38, 975 (1993).

    Google Scholar 

  23. H.E. Toma and K. Araki, J. Coord. Chem., 24, 1 (1991).

    Google Scholar 

  24. H.E. Toma, P.S. Santos, M.P.D. Mattioli and L.A.A. de Oliveira, Polyhedron, 6, 603 (1987).

    Google Scholar 

  25. R.S. Nicholson, Anal. Chem., 38, 1406 (1966).

    Google Scholar 

  26. A.L. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edit., Wiley, New York, 2000.

    Google Scholar 

  27. A. Sevcik, Collect. Czech. Chem. Commun., 13, 349 (1948).

    Google Scholar 

  28. J.E.B. Randles, Trans. Faraday Soc., 44, 327 (1948).

    Google Scholar 

  29. J.N. Armor and H. Taube, J. Am. Chem. Soc., 92, 2560 (1970).

    Google Scholar 

  30. H. Taube, Pure Appl. Chem., 51, 901(1979).

    Google Scholar 

  31. K. Kalyanasundaram, Coord. Chem. Rev., 46, 159 (1982).

    Google Scholar 

  32. K.J. Nakamoto, J. Phys. Chem., 64, 1420 (1960).

    Google Scholar 

  33. W.W. Brandt, F.P. Dwyer and E.C. Gyarfas, Chem. Rev., 54, 959 (1954).

    Google Scholar 

  34. G.M. Bryant, J.E. Fergusson and H.K.J. Powell, Aust. J. Chem., 24, 257 (1971).

    Google Scholar 

  35. A. Juris, V. Balzani, F. Barigelletti, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 84, 85 (1988).

    Google Scholar 

  36. J.N. Braddock and T.J. Meyer, Inorg. Chem., 12, 723 (1973).

    Google Scholar 

  37. R.A. Krause, Inorg. Chim. Acta, 22, 209 (1977).

    Google Scholar 

  38. G.M. Bryant and J.E. Fergusson, Aust. J. Chem., 24, 275 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, R.C., Toma, H.E. Linkage isomerism and redox properties of ruthenium–polypyridine benzotriazole complexes. Transition Metal Chemistry 28, 43–50 (2003). https://doi.org/10.1023/A:1022510505110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022510505110

Keywords

Navigation