Skip to main content
Log in

A Comparative Study of the Effect of Exogenous and Endogenous Photostabilizers on Lens Crystallin Photodegradation

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The purpose of the present study was to determine in vitro the effect of sodium azide, ethanol, trans-β-carotene, and the reduced form of glutathione on phototransformations in the lens crystallin. These photostabilizers show a specific affinity for different kinds of free radicals. The water-soluble protein from the cortical part of the eye was irradiated with doses of UV C ranging from 0 to 4.07 J/cm2. Changes in the structure of the crystallins have been monitored by steady-state absorption and fluorescence spectroscopy. Irradiation of dialyzed samples of these proteins at a wavelength of 254 nm (1.13 ± 0.02 mW/cm2) caused photooxidation of aromatic residues; the crystallin solutions became opaque and turbid. The samples displayed increasing attenuance at a wavelength of 280 nm as photodamage proceeded. The fluorescence of tryptophan at 333 nm systematically decreased and a new band between 400 and 500 nm appeared during the UV C irradiation. Our results show that the antioxidants can protect proteins from UV C-induced photodegradation and the protective effect is significantly dependent on their concentration in the protein solution. There are no dramatic differences in the rates of exogenous and endogenous scavenging of generated free radicals for all concentrations used, with rate constants varying by a factor no greater than 2. The mechanism and the rate of scavenging or quenching are dependent on the nature of the radical species and the photostabilizer structure. Although this study provides evidence for free radical scavenging and protein protection, extrapolations to possible antioxidant effects in vivo must be made cautiously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Nalini, B. Bax, H. Driessen, D. S. Moss, P. F. Lindley, and C. Slingsby (1994) J. Mol. Biol. 236, 1250.

    Article  PubMed  Google Scholar 

  2. H. Driessen, B. Bax, C. Slingsby, P. F. Lindley, D. Mahadevan, D. S. Moss, and I. Tickle (1991) Acta Crystallogr. Sect. B 47, 987.

    Article  Google Scholar 

  3. G. Wistow (1993) Exp. Eye Res. 56, 729–732.

    Article  PubMed  Google Scholar 

  4. R. C. Augusteyn and J. Kortez (1987) FEBS Lett. 22, 1–5.

    Article  Google Scholar 

  5. R. F. Borkman and J. McLaughlin (1995) Photochem. Photobiol. 62, 104–105.

    Google Scholar 

  6. J.-S. Lee, J.-H. Liao, S.-H. Wu, and S.-H. Chiou (1997) J. Protein Chem. 4, 283–289.

    Article  Google Scholar 

  7. K. Mandal, S. K. Bose, and B. Chakrabarti (1986) Photochem. Photobiol. 43, 515–523.

    PubMed  Google Scholar 

  8. Ch. Mohan Rao, D. Balasubramantan, and B. Chakrabarti (1987) Photochem. Photobiol. 46, 511–515.

    PubMed  Google Scholar 

  9. R. J. W. Truscott and R. C. Augusteyn (1977) Biochim. Biophys. Acta 492, 43–52.

    PubMed  Google Scholar 

  10. A. Balter (1991) Lens Eye Tox. Res. 8, 195–215.

    Google Scholar 

  11. K. Uchida, N. Enomoto, K. Itakura, and S. Kawakishi (1989) Agr. Biol. Chem. 53, 3285–3292.

    Google Scholar 

  12. J. N. Liang, S. K. Bose, and B. Chakrabarti (1985) Photochem. Photobiol. 40, 461–469.

    Google Scholar 

  13. U. P. Andley, P. Sutherland, J. N. Liang, and B. Chakrabarti (1984) Photochem. Photobiol. 40, 343–349.

    PubMed  Google Scholar 

  14. S. K. Bose, K. Mandal, and B. Chakrabarti (1985) Biochem. Biophys. Res. Commun. 128, 1322–1328.

    PubMed  Google Scholar 

  15. D. Y. Li, R. F. Borkman, R. H. Wang, and J. Dillon (1990) Exp. Eye Res. 51, 663–669.

    Article  PubMed  Google Scholar 

  16. J. D. Goosey, J. S. Zigler, and B. Chakrabarti (1985) Exp. Eye Res. 40, 461–469.

    Article  PubMed  Google Scholar 

  17. B. J. Ortwerth and P. R. Olsen (1994) Photochem. Photobiol. 60, 53–60.

    PubMed  Google Scholar 

  18. B. J. Ortwerth, M. Linetsky, and P. R. Olesen (1995) Photochem. Photobiol. 62, 454–462.

    PubMed  Google Scholar 

  19. H. O. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) J. Biol. Chem. 193, 265–275.

    PubMed  Google Scholar 

  20. H. Bloemendal (1981) Molecular and Cellular Biology of the Eye, John Wiley and Sons, New York.

    Google Scholar 

  21. M. Linetsky and B. J. Ortwerth (1995) Photochem. Photobiol. 62, 87–93.

    PubMed  Google Scholar 

  22. M. Linetsky and B. J. Ortwerth (1996) Photochem. Photobiol. 63, 649–655.

    PubMed  Google Scholar 

  23. M. Linetsky and B. J. Ortwerth. (1997) Photochem. Photobiol. 65, 522–529.

    PubMed  Google Scholar 

  24. S. Lerman (1980) Radiant Energy and the Eye, Macmillan, New York.

    Google Scholar 

  25. B. Halliwell and J. M. Gutteridge (1990) Methods Enzymol. 186, 1–85.

    Google Scholar 

  26. B. J. Ortwerth, A. Coots, H. J. James, and M. Linetsky (1998) Arch. Biochem. Biophys. 351, 189–196.

    Article  PubMed  Google Scholar 

  27. M. Linetsky, N. Ranson, and B. J. Ortwerth (1998) Arch. Biochem. Biophys. 351, 180–188.

    Article  PubMed  Google Scholar 

  28. T. P. Hum and R.C. Augusteyn (1987) Curr. Eye Res. 6, 1103.

    PubMed  Google Scholar 

  29. J. A. Thomas, B. Poland, and R. Honzatko (1995) Biochim. Biophys. Acta 319, 1–9.

    Article  Google Scholar 

  30. B. P. Lim, A. Nagao, J. Terao, K. Tanaka, T. Suzuki, and K. Takama. (1992) Biochim. Biophys. Acta 1126, 178–184.

    PubMed  Google Scholar 

  31. Ch. S. Foote, Y. C. Chang, and R. W. Denny (1970) J. Am. Chem. Soc. 92, 5218–5219.

    PubMed  Google Scholar 

  32. A. Taylor (1993) J. Am. Coll. Nutr. 12, 138–146.

    PubMed  Google Scholar 

  33. S. T. Mayne (1996) FASEB J. 10, 690–701.

    PubMed  Google Scholar 

  34. R. Ugarte, A. M. Edwards, M. S. Diez, A. Valenzuela, and E. Silva (1992) J. Photochem. Photobiol. B Biol. 13, 161–168.

    Article  Google Scholar 

  35. J. Dillon (1991) J. Photochem. Photobiol. B Biol. 10, 23–40.

    Article  Google Scholar 

  36. S. Lerman and R. Borkman (1977) Science 197, 1287–1288.

    PubMed  Google Scholar 

  37. J. N. Liang, S. Bose, J. Thomson, and B. Chakrabarti (1988) Photochem. Photobiol. 47, 583–591.

    PubMed  Google Scholar 

  38. K. Mandal, M. Kono, S. K. Bose, J. Thomson, and B. Chakrabarti (1988) Photochem. Photobiol. 4, 583–591.

    Google Scholar 

  39. J. N. Liang, S. K. Bose, and B. Chakrabarti (1985) Photochem. Photobiol. 40, 461–469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamińska, A., Kowalska, M. & Balter, A. A Comparative Study of the Effect of Exogenous and Endogenous Photostabilizers on Lens Crystallin Photodegradation. Journal of Fluorescence 9, 213–219 (1999). https://doi.org/10.1023/A:1022507701049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022507701049

Navigation