Skip to main content
Log in

Asymptotic Modeling of Nonlinear Wave Processes in Shock‐Loaded Elastoplastic Materials

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Nonlinear wave processes in shock‐loaded elastoplastic materials are modeled. A comparison of the results obtained with experimental data and numerical solutions of exact systems of dynamic equations shows that the model equations proposed qualitatively describe the stress‐distribution evolution in both the elastic‐flow and plastic‐flow regions and can be used to solve one‐ and two‐dimensional problems of pulsed deformation and fracture of elastoplastic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Myagkov, “Nonlinear waves in shock-loaded condensed matter,” J. Phys. D. Appl. Phys., 27, 1678–1686 (1994).

    Google Scholar 

  2. N. N. Myagkov, “Interaction of nonlinear waves in materials with elastoplastic behavior,” J. Appl. Mech. Tech. Phys., 35, No. 2, 246–256 (1994).

    Google Scholar 

  3. O. V. Rudenko and S. I. Soluyan, Theoretical Fundamentals of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  4. L. E. Malvern, “Plastic wave propagation in bar of material exhibiting a strain rate effect,” Quart. Appl. Math., 8, No. 4, 405–411 (1951).

    Google Scholar 

  5. J. J. Gilman, “Dynamics of dislocations and behavior of materials under shock loading,” Mekhanika, No. 2, 96–134 (1970).

    Google Scholar 

  6. V. K. Nowacki, Wave Problems of Theory of Plasticity [Russian translation], Moscow, Mir (1978).

    Google Scholar 

  7. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1985).

    Google Scholar 

  8. G. I. Kanel’ and V. E. Fortov, “Mechanical properties of condensed media under intense pulsed actions,” Usp. Mekh., 10, No. 3, 3–81 (1987).

    Google Scholar 

  9. V. M. Fomin and É. M. Khakimov, “Numerical modeling of compression and rarefaction waves in metals,” J. Appl. Mech. Tech. Phys., 20, No. 5, 619–625 (1979).

    Google Scholar 

  10. C. E. Morris (ed.), Los Alamos Shock Wave Profile Data, Univ. California Press, Berkeley (1982).

    Google Scholar 

  11. C. E. Morris, M. A. Winkler, and A. C. Mitchell, “Ti-6Al-4V alloy wave profile measurements in the shadow region,” in: S. C. Schmidt and N. C. Holms (eds.), Shock Waves in Condensed Matter, Elsevier, Amsterdam (1988), pp. 265–268.

    Google Scholar 

  12. O. G. Zavileiskii and N. N. Myagkov, “Quasiplane shock wave in an elastoplastic Maxwell medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 71–76 (1991).

    Google Scholar 

  13. G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, “Kinetics of spallation rupture in the aluminum alloy AMg6M,” J. Appl. Mech. Tech. Phys., 25, No. 5, 707–710 (1984).

    Google Scholar 

  14. L. Seaman, D. R. Curran, and D. Shockey, “Computational models for ductile and brittle fracture,” J. Appl. Phys., 47, No. 11, 4814–4826 (1976).

    Google Scholar 

  15. K. I. Zapparov and V. N. Kukudzhanov, “Mathematical modeling of the problems of pulsed deformation, interaction, and fracture of elastoplastic bodies,” Preprint No. 280, Inst. Appl. Mech., Acad. of Sci. of the USSR, Moscow (1986).

    Google Scholar 

  16. J. Eftis and J. A. Nemes, “Constitutive modelling of spall fracture,” Arch. Mech., 43, Nos. 2/3, 399–435 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myagkov, N.N. Asymptotic Modeling of Nonlinear Wave Processes in Shock‐Loaded Elastoplastic Materials. Journal of Applied Mechanics and Technical Physics 44, 249–254 (2003). https://doi.org/10.1023/A:1022504729054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022504729054

Navigation