Skip to main content
Log in

Kinetics and mechanism of exchange of cyanide in hexacyanoferrate(II) by N-methylpyrazinium ion in the presence of mercury(II) as a catalyst

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the mercury(II) catalysed ligand exchange of the hexacyanoferrate(II) complex with the N-methylpyrazinium ion (Mpz+) in a potassium hydrogen phthalate buffer medium has been investigated at 25.0 ± 0.1 °C, pH = 5.0 ± 0.02 and ionic strength, I = 0.1 M (KNO3). The reaction was followed spectrophotometrically in the aqueous medium by measuring the increase in absorbance of the intense blue complex [Fe(CN)5Mpz]2− at its λmax 655 nm. The effect of pH, and the concentrations of [Fe(CN)6 4−] and Mpz+ on the reaction rate have been studied and analysed. The varying catalytic activity of mercury(II) as a function of concentration has also been explained. The kinetic data suggest that substitution follows an interchange dissociative (I d) mechanism and occurs via formation of a solvent-bound intermediate. The effects of the dielectric constant of the medium on the reaction rates have been used to visualize the formation of a polar activated complex and an interchange dissociative mechanism for the reaction. A mechanism has been proposed in order to interpret the kinetic data. Kinetic evidence is reported for the displacement of CN by Mpz+ in [Fe(CN)6 4−]. Activation parameters for the catalysed and uncatalysed reaction have been evaluated, and lend further support to the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Sabo, R.E. Shepherd, M.S. Rau and M.G. Elliott, Inorg. Chem., 26, 2897 (1987).

    Google Scholar 

  2. E.A. Abu-Gharib, R. Ali, M.J. Blandamer and J. Burgess, Transition Met. Chem., 12, 371 (1987).

    Google Scholar 

  3. S.E. Rinco and P.J. Aymonino, Transition Met. Chem., 12, 174 (1987).

    Google Scholar 

  4. G. Stochel and R. van Eldik, Inorg. Chim. Acta, 155, 95 (1989) and refs. therein.

    Google Scholar 

  5. S.D.S.S. Borges, A.L. Coelho, I.S. Moreira and M.A.B.D. Araujo, Polyhedron, 13, 1015 (1994).

    Google Scholar 

  6. N.V. Hrepic and J.M. Malin, Inorg. Chem., 18, 409 (1979) and refs. therein.

    Google Scholar 

  7. I. Maciejowska, Z. Stasicka, G. Stochel and R. van Eldik, J. Chem. Soc., 3643 (1999).

  8. G. Fernandez, M.G.M. Del, A. Rodriguz, M. Munoz and M.L. Moya, React Kinet. Cat. Lett., 70, 389 (2000).

    Google Scholar 

  9. G. Fernandez, M.G.M. Del, A. Rodriguz, M. Munoz and M.L. Moya, J. Colloid Interf. Sci., 225, 47 (2000).

    Google Scholar 

  10. M.D. Fernando, J. Refael, G.H. Carlos and S. Francisco, New J. Chem., 23, 1203 (1999).

    Google Scholar 

  11. M. Fernando, S. Francisco and J. Burgess, Transition Met. Chem., 25, 537 (2000).

    Google Scholar 

  12. S. Alshehri, Transition Met. Chem., 22, 553 (1997).

    Google Scholar 

  13. D.G. Bray and R.C. Thompson, Inorg. Chem., 33, 905 (1994).

    Google Scholar 

  14. M. Kimura, Y. Shiota, S. Kishi and K. Tsukahara, Bull. Chem. Soc., 72, 1293 (1999).

    Google Scholar 

  15. M. Kimura, N. Ieyama, M. Matsumoto, K. Shimada and K. Tsukahara, Bull. Chem. Soc., 74, 1871 (2001).

    Google Scholar 

  16. R. He and J. Wang, Xiyou Jinshu Cailiao Yu Gongcheng, 28, 60 (1999); Chem. Abstr., 130, 275849g (1999).

    Google Scholar 

  17. A. Zmikic, D. Cvrtila, D. Pavlovic, I. Murati, W. Reynolds and S. Asperger, J. Chem. Soc., Dalton Trans., 1284 (1973) and refs. therein.

  18. Y.L. Feng, H. Narasaki, L.C. Tian, S.M. Wu and H.Y. Chen, Anal Sci., 15, 915 (1999).

    Google Scholar 

  19. S. Prasad and P.C. Nigam, Indian J. Envtl. Protection, 9, 113 (1989).

    Google Scholar 

  20. M. Phull and P.C. Nigam, Talanta, 28, 591 (1981).

    Google Scholar 

  21. T. Alam and Kamaluddin, Bull Chem. Soc. Jpn., 72, 1697 (1999) and refs. therein.

    Google Scholar 

  22. A.G. Sharpe, The Chemistry of Cyano Complexes of Transition Metals, Academic Press, London, 1976, p. 1081, 1262.

    Google Scholar 

  23. D. Sicilia, S. Rubio and D. Perez-Bendito, Talanta, 38, 1147 (1991).

    Google Scholar 

  24. P.J. Morando, V.I.E. Bruyere, M.A. Blesa and J.A. Olabe, Transition Met. Chem., 8, 99 (1983) and refs. therein.

    Google Scholar 

  25. H.H. Willard, L.L. Merritt Jr. and J.A. Dean, Instrumental Method of Analysis, 4th edit., Litton, New York, 1977, p. 121.

    Google Scholar 

  26. C.T. Bahner and L.L. Norton, J. Am. Chem. Soc., 72, 2881 (1950).

    Google Scholar 

  27. R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., Ohio, 49th edit., 1969, D-79.

    Google Scholar 

  28. W.A. Eaton, P. George and G.I. Hanaria, J. Phys. Chem., 71, 2016 (1967).

    Google Scholar 

  29. D.D. Perrin and I.G. Sayce, Talanta, 14, 833 (1967).

    Google Scholar 

  30. M.T. Beck, Fourteen: A Magic Number of Coordination Chemistry, Proc. XX ICCC, Calcutta, India 1979, In Coordination Chemistry-20, Pergamon Press, Oxford, 1979, p. 31.

    Google Scholar 

  31. J.G. Kirkwood, J. Chem. Phys., 2, 351 (1934).

    Google Scholar 

  32. I. Murati, D. Pavlovic, A. Sustra and S. Asperger, J. Chem. Soc., Dalton Trans., 500 (1978) and refs. therein.

  33. G. Allen and E. Warhurst, Trans. Faraday Soc., 54, 1786 (1958).

    Google Scholar 

  34. L.D. Hansen, R.M. Izatt and J.J. Christensen, Inorg. Chem. 2, 1243 (1963).

    Google Scholar 

  35. V.I. Belevantsev and B.I. Peschchevitakii, Koord. Khim., 5, 27 (1979).

    Google Scholar 

  36. J.J. Christensen, R.M. Izatt and D. Eatough, Inorg. Chem., 4, 1278 (1965).

    Google Scholar 

  37. A. Bellomo, Talanta, 22, 197 (1975).

    Google Scholar 

  38. H.E. Toma and J.M. Main, Inorg. Chem., 12, 2080 (1973).

    Google Scholar 

  39. L.A. Gentil, H.O. Zerga and J.A. Olabe, J. Chem. Soc., Dalton Trans., 2731 (1986).

  40. J.M.A. Hoddenbagh and D.H. Macartney, Inorg. Chem., 25, 2099 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S. Kinetics and mechanism of exchange of cyanide in hexacyanoferrate(II) by N-methylpyrazinium ion in the presence of mercury(II) as a catalyst. Transition Metal Chemistry 28, 1–8 (2003). https://doi.org/10.1023/A:1022501519744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022501519744

Keywords

Navigation