Skip to main content
Log in

Aerobic Glycolysis by Proliferating Cells: Protection against Oxidative Stress at the Expense of Energy Yield

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Primary cultures of mitogen-activated rat thymocytes were used to study energy metabolism, gene expression of glycolytic enzymes, and production of reactive oxygen species during cell cycle progression. During transition from the resting to the proliferating state a 7- to 10-fold increase of glycolytic enzyme induction occurs which enables the cells to meet the enhanced energy demand by increased aerobic glycolysis. Cellular redox changes have been found to regulate gene expression of glycolytic enzymes by reversible oxidative inactivation of Spl-binding to the cognate DNA-binding sites in the promoter region. In contrast to nonproliferating cells, production of phorbol 12-myristate 13-acetate (PMA)-primed reactive oxygen species (ROS) in proliferating rat thymocytes and HL-60 cells is nearly abolished. Pyruvate, a product of aerobic glycolysis, is an effective scavenger of ROS, which could be shown to be generated mainly at the site of complex III of the mitochondrial respiratory chain. Aerobic glycolysis by proliferating cells is discussed as a means to minimize oxidative stress during the phases of the cell cycle when maximally enhanced biosynthesis and cell division do occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aisenberg, A. C. (1961). The Glycolysis and Respiration of Tumors, Academic Press, London.

    Google Scholar 

  • Ammendola, R., Mesuraca, M., Russo, T., and Cimino, F. (1994). Eur. J. Biochem. 225, 483–489.

    Google Scholar 

  • Andrae, U., Singh, J., and Ziegler-Skylakakis, K. (1985). Toxicol. Lett. 28, 93–98.

    Google Scholar 

  • Ardawi, M. S., and Newsholme, E. A. (1982). Biochem. J. 208, 743–748.

    Google Scholar 

  • Argiles, J. M., and Lopez-Soriano, F. J. (1990). Med. Hypotheses 32, 151–155.

    Google Scholar 

  • Arora, K. K., and Pedersen, P. L. (1988). J. Biol. Chem. 263, 17422–17428.

    Google Scholar 

  • Ashizawa, K., Willingham, M. C., Liang, C. M., and Cheng, S. Y. (1991). J. Biol. Chem. 266, 16842–16846.

    Google Scholar 

  • Baggetto, L. G. (1992). Biochimie 74, 959–974.

    Google Scholar 

  • Balinsky, D., Platz, C. E., and Lewis, J. W. (1983). Cancer Res. 43, 5895–5901.

    Google Scholar 

  • Barron, J. T., Kopp, S. J., Tow, J. P., and Parrillo, J. E. (1991). Biochim. Biophys. Acta 1093, 125–134.

    Google Scholar 

  • Bartley, J. C., Barber, S., and Abraham, S. (1975). Cancer Res. 35, 1649–1653.

    Google Scholar 

  • Baumann, M., Jezussek, D., Lang, T., Richter, R. T., and Brand, K. (1988). Tumour Biol. 9, 281–286.

    Google Scholar 

  • Board, M., Humm, S., and Newsholme, E. A. (1990). Biochem. J. 265, 503–509.

    Google Scholar 

  • Brand, K. (1985). Biochem. J. 228, 353–361.

    Google Scholar 

  • Brand, K. (1987). J. Biol. Chem. 262, 15232–15235.

    Google Scholar 

  • Brand, M. D. (1990). Biochim. Biophys. Acta 1018, 128–133.

    Google Scholar 

  • Brand, K., and Hermfisse, U. (1997). FASEB J. 11, 388–395.

    Google Scholar 

  • Brand, K., Leibold, W., Luppa, P., Schoerner, C., and Schulz, A. (1986). Immunobiology 173, 23–34.

    Google Scholar 

  • Brand, K., Aichinger, S., Forster, S., Kupper, S., Neumann, B., Nürnberg, W., and Ohrisch, G. (1988). Eur. J. Biochem. 172, 695–702.

    Google Scholar 

  • Burk, D., Woods, M., and Hunter, J. (1967). J. Natl. Cancer Inst. 38, 839–863.

    Google Scholar 

  • Bustamante, E., and Pedersen, P. L. (1977). Proc. Natl. Acad. Sci. USA 74, 3735–3739.

    Google Scholar 

  • Bustamante, E., Morris, H. P., and Pedersen, P. L. (1981). J. Biol. Chem. 256, 8699–8704.

    Google Scholar 

  • Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C. (1978). Proc. Natl. Acad. Sci. USA 75, 2458–2462.

    Google Scholar 

  • Crabtree, H. G. (1929). Biochem. J. 23, 536–545.

    Google Scholar 

  • Crepin, K. M., Darville, M. I., Hue, L., and Rousseau, G. G. (1989). Eur. J. Biochem. 183, 433–440.

    Google Scholar 

  • Diaz-Espada, F., and Lopez-Alarcon, L. (1982). Immunology 46, 705–712.

    Google Scholar 

  • Dröge, W., Roth, S., Altmann, A., and Mihm, S. (1987). Cell. Immunol. 108, 405–416.

    Google Scholar 

  • Dunaway, G. A., and Karsten, T. P. (1985). J. Biol. Chem. 260, 4180–4185.

    Google Scholar 

  • Eigenbrodt, E. and Glossmann, H. (1980). Trends Pharmacol. Sci. 1, 240–245.

    Google Scholar 

  • Eigenbrodt, E., Gerbracht, U., Mazurek, S., Presek, P., and Friis, R. (1985). In Biochemical and Molecular Aspects of Selected Cancers, Vol. 2, Academic Press, New York, pp. 311–385.

    Google Scholar 

  • Gilat, D., Hershkoviz, R., Goldkorn, I., Cahalon, L., Korner, G., Vlodavsky, I., and Lider, O. (1995). J. Exp. Med. 181, 1929–1934.

    Google Scholar 

  • Goldstone, S. D., Fragonas, J. C., Jeitner, T. M., and Hunt, N. H. (1995). Biochim. Biophys. Acta 1263, 114–122.

    Google Scholar 

  • Greiner, E. F., Guppy, M., and Brand, K. (1994). J. Biol. Chem. 269, 31484–31490.

    Google Scholar 

  • Guppy, M., Greiner, E., and Brand, K. (1993). Eur. J. Biochem. 212, 95–99.

    Google Scholar 

  • Guse, A. H., Greiner, E., Emmrich, F., and Brand, K. (1993). J. Biol. Chem. 268, 7129–7133.

    Google Scholar 

  • Hamm-Künzelmann, B., Schäfer, D., Weigert, C., and Brand, K. (1997). FEBS Lett. 403, 87–90.

    Google Scholar 

  • Hermfisse, U., Schäfer, D., Netzker, R., and Brand, K. (1996). Biochem. Biophys. Res. Commun. 225, 997–1005.

    Google Scholar 

  • Hue, L., and Rider, M. H. (1987). Biochem. J. 245, 313–324.

    Google Scholar 

  • Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997). Science 275, 1649–1652.

    Google Scholar 

  • Krebs, H. A. (1981). In Glutamine: Metabolism, Enzymology and Regulation (Mora, J., and Palacios, R., eds.), Academic Press, New York, pp. 319–329.

    Google Scholar 

  • LaNoue, K. F., Hemington, J. G., Onishi, T., Morris, H. P., and Williamson, J. R. (1977). In Hormones and Cancer, Academic Press, New York, pp. 311–385.

    Google Scholar 

  • Los, M., Schenk, H., Hexel, K., Baeuerle, P. A., Dröge, W., and Schulze-Osthoff, K. (1995). EMBO J. 14, 3731–3740.

    Google Scholar 

  • Marjanovic, S., Wielburski, A., and Nelson, B. D. (1988). Biochim. Biophys. Acta 970, 1–6.

    Google Scholar 

  • Marjanovic, S., Wollberg, P., Skog, S., Heiden, T., and Nelson, B. D. (1993). Arch. Biochem. Biophys. 302, 398–401.

    Google Scholar 

  • Mazurek, S., Michel, A. and Eigenbrodt, E. (1997). J. Biol Chem. 272, 4941–4952.

    Google Scholar 

  • McKeehan, W. L. (1982). Cell. Biol. Int. Rep. 6, 635–650.

    Google Scholar 

  • Mujica, A., Moreno-Rodriguez, R., Naciff, J., Neri, L., and Tash, J. S. (1991). J. Reprod. Fertil. 92, 75–87.

    Google Scholar 

  • Netzker, R., Greiner, E., Eigenbrodt, E., Noguchi, T., Tanaka, T., and Brand, K. (1992). J. Biol. Chem. 267, 6421–6424.

    Google Scholar 

  • Netzker, R., Hermfisse, U., Wein, K. H., and Brand, K. (1994). Biochim. Biophys. Acta 1224, 371–376.

    Google Scholar 

  • Netzker, R., Weigert, C., and Brand, K. (1997). Eur. J. Biochem. 245, 174–181.

    Google Scholar 

  • Noguchi, T. Inoue, H., Nakamura, Y., Chen, H. L., Matsubara, K., and Tanaka, T. (1984). J. Biol. Chem. 259, 2651–2655.

    Google Scholar 

  • O'Donnell-Tormey, J., Nathan, C. F., Lanks, K., DeBoer, C. J., and De La Harpe, J. (1987). J. Exp. Med. 165, 500–514.

    Google Scholar 

  • Ouchi, M., and Ishibashi, S. (1975). Biochem. J. 149, 481–483.

    Google Scholar 

  • Oude-Weernink, P. A., Rijksen, G., and Staal, G. E. (1991). Tumour Biol. 12, 339–352.

    Google Scholar 

  • Pedersen, P. L. (1978). Prog. Exp. Tumor Res. 22, 190–274.

    Google Scholar 

  • Poli, V., Mancini, F. P., and Cortese, R. (1990). Cell 63, 643–653.

    Google Scholar 

  • Racker, E. (1976). J. Cell Physiol. 89, 697–700.

    Google Scholar 

  • Reitzer, L. J., Wice, B. M., and Kennell, D. (1979). J. Biol. Chem. 254, 2669–2676.

    Google Scholar 

  • Reitzer, L. J., Wice, B. M., and Kennell, D. (1980). J. Biol. Chem. 255, 5616–5626.

    Google Scholar 

  • Rose, I. A., and Warms, V. B. (1967). J. Biol. Chem. 242, 1635–1645.

    Google Scholar 

  • Schäfer, D., Hamm-Künzelmann, B., Hermfisse, U., and Brand, K. (1996). FEBS Lett. 391, 35–38.

    Google Scholar 

  • Schöbitz, B., Netzker, R., Hannappel, E., and Brand, K. (1991). Eur. J. Biochem. 199, 257–262.

    Google Scholar 

  • Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyaert, R., Jacob, W. A., and Fiers, W. (1992). J. Biol. Chem. 267, 5317–5323.

    Google Scholar 

  • Seshagiri, P. B., and Bavister, B. D. (1991). Mol. Reprod. Dev. 30, 105–111.

    Google Scholar 

  • Tollefsbol, T. O., and Cohen, H. J. (1985). J. Cell Physiol. 123, 417–424.

    Google Scholar 

  • Wang, T., Marquardt, C. and Foker, J. (1976). Nature 261, 702–705.

    Google Scholar 

  • Warburg, O. (1929). Biochem. Z. 204, 482–483.

    Google Scholar 

  • Warburg, O. (1930). The Metabolism of Tumors, Arnold Constable, London.

    Google Scholar 

  • Warburg, O., Poesener, K., and Negelein, E. (1924). Biochem. Z. 152, 309–344.

    Google Scholar 

  • Weber, G. (1977). N. Engl. J. Med. 296, 486–492 and 541–551.

    Google Scholar 

  • Weber, G. and Morris, H. P. (1963). Cancer Res. 23, 987–994.

    Google Scholar 

  • Weinhouse, S. (1966). Gann Monogr. 1, 99–115.

    Google Scholar 

  • Weinhouse, S. (1976). Z. Krebsforsch. Klin, Onkol. 87, 115–126.

    Google Scholar 

  • Zielke, H. R., Zielke, C. L., and Ozand, P. T. (1984). Fed. Proc. 43, 121–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, K. Aerobic Glycolysis by Proliferating Cells: Protection against Oxidative Stress at the Expense of Energy Yield. J Bioenerg Biomembr 29, 355–364 (1997). https://doi.org/10.1023/A:1022498714522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022498714522

Navigation