Abstract
The mechanism of focal demyelination in multiple sclerosis has been a long-standing enigma of this disorder. Cytokines, a diverse family of signalling molecules, are viewed as potential mediators of the process based on clinical observations and studies with animal models and tissue/cell culture systems. Myelin and oligodendrocyte (OL) destruction occur in cultured preparations subjected to cytokines such as tumor necrosis factor-α (TNFα) and lymphotoxin (LT). Many studies have shown these and other cytokines to be elevated at lesion sites and in the CSF of multiple sclerosis (MS) patients, with similar findings in animal models. Some variability in the nature of MS lesion formation has been reported, both OLs and myelin being primary targets. To account for myelin destruction in the presence of apparently functional OLs we hypothesize that cytokines such as TNFα and LTα contribute to myelin damage through triggering of specific reactions within the myelin sheath. We further propose that neutral sphingomyelinase (SMase) is one such enzyme, two forms of which have been detected in purified myelin. An additional event is accumulation of cholesterol ester, apparently a downstream consequence of cytokine-induced SMase. The resulting lipid changes are viewed as potentially destabilizing to myelin, which may render it more vulnerable to attack by invading and resident phagocytes.
Similar content being viewed by others
REFERENCES
Ruddle, N. H., and Waksman, B. H. 1968. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. III. Analysis of mechanism. J. Exp. Med. 128:1267-1269.
Meltzer, M. S., and Bartlett, G. C. 1972. Cytotoxicity in vitro by products of specifically stimulated spleen cells: susceptibility of tumor cells and normal cells. J. Natl. Cancer Inst. 49:1439-1443.
Vilcek, J., and Lee, T. H. 1991. Tumor necrosis factor: new insights into the molecular mechanisms of its multiple actions. J. Biol. Chem. 266:7313-7316.
Tracey, K. C., and Cerami, A. 1993. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol. 9:317-343.
Jacob, C. O. 1992. Tumor necrosis factor α in autoimmunity: pretty girl or old witch? Immunol. Today 13:122-125.
Cheng, B., Christakos, S., and Mattson, M. 1994. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139-153.
Ryffel, B., and Mihatsch, M. J. 1993. TNF receptor distribution in human tissues. Internat. Rev. Experim. Pathol. 34B:149-156.
Gendron, R. L., Nestel, F. P., and Lapp, W. S. 1991. Expression of tumor necrosis factor alpha in the developing nervous system. Int. J. Neurosci. 60:129-136.
Merrill, J. E. 1992. Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathologic. Dev. Neurosci. 14:1-10.
Bazzoni, F., and Beutler, B. 1996. The tumor necrosis factor ligand and receptor families. New Engl. J. Med. 334:1717-1725.
Benveniste, E. N., and Benos, D. J. 1995. TNF-α-and IFN-γ-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J. 9:1577-1584.
ffrench-Constant, C. 1994. Pathogenesis of multiple sclerosis. Lancet 343:271-275.
Eng, L. F., Ghirnikar, R. S., and Lee, Y. L. 1996. Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem. Res. 21:511-525.
Olsson, T. 1995. Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Revs. 144:245-268.
Hafler, D. A., and Weiner, H. L. 1995. Immunologic mechanisms and therapy in multiple sclerosis. Immunol. Revs. 144:75-107.
Steinman, L. 1996. Multiple Sclerosis: a coordinationed immunological attack against myelin in the central nervous system. Cell 85:299-302.
Merrill, J. E., and Benveniste, E. N. 1996. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 19:331-338.
Ransohoff, R. M., and Bo, L. 1996. Cytokines in CNS inflammation: status of experimental autoimmune encephalomyelitis and multiple sclerosis as cytokine-regulated delayed-type hypersensitivity reactions. Pages 221-237, in Ransohoff, R. M., and Benveniste, E. N. (eds.), Cytokines and the CNS. CRC Press, Boca Raton, Florida.
Brosnan, C. F., and Raine, C. S. 1996. Mechanisms of immune injury in multiple sclerosis. Brain Pathol. 6:243-257.
Navikas, V., and Link, H. 1996. Review: cytokines and the pathogenesis of multiple sclerosis. J. Neurosci. Res. 45:322-333.
Norton, W. T., and Poduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749-757.
Norton, W. T., and Autilio, L. A. 1966. The lipid composition of purified bovine brain myelin. J. Neurochem. 13:213-222.
Norton, W. T., and Cammer, W. 1984. Isolation and characterization of myelin. Pages 147-195, in Morell, P. (ed.), Myelin. Plenum Press, New York.
Robbins, D. S., Shirazi, Y., Drysdale, B.-E., Lieberman, A., Shin, H. S., and Shin, M. L. 1987. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immunol. 139:2593-2597.
Selmaj, K. W., and Raine, C. S. 1988. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23:339-346.
Brosnan, C. F., Selmaj, K., and Raine, C. S. 1988. Hypothesis: a role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. J. Neuroimmunol. 18:87-94.
Selmaj, K. W., Raine, C. S., Farooq, M., Norton, W. T., and Brosnan, C. F. 1991. Cytokine cytotoxicity against oligodendrocytes: apoptosis induced by lymphotoxin. J. Immunol. 147:1522-1529.
Louis, J.-C, Magal, E., Takayama, S., and Varon, S. 1993. CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259:689-692.
McLarnon, J. G., Michikawa, M., and Kim S. U. 1993. Effects of tumor necrosis factor on inward potassium current and cell morphology in cultured human oligodendrocytes. Glia 9:120-126.
Soliven, B., and Szuchet, S. 1995. Signal transduction pathways in oligodendrocytes: role of tumor necrosis factor-α. Int. J. Devl. Neurosci. 13:351-367.
Dugandzija-Novakovic, S., and Shrager, P. 1995. Survival, development, and electrical activity of central nervous system myelinated axons exposed to tumor necrosis factor in vitro. J Neurosci. Res. 40:117-126.
Agresti, C., D'Urso, D., and Levi, G. 1996. Reversible inhibitory effects of interferon-γ and tumor necrosis factor-α on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur. J. Neurosci. 8:1106-1116.
Andrews, T., Zhang, P., and Bhat, N. R. 1996. Cytokines, ceramide and oligodendrocyte cytotoxicity. J. Neurochem. 66(Suppl.):S89B.
Merrill, J. E. 1991. The effects of IL1 and TNF alpha on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev. Neurosci. 13:130-137.
Tchelingerian, J.-L., Monge, M., Le Saux, F., Zalc, B., and Jacque, C. 1995. Differential oligodendroglial expression of tumor necrosis factor receptors in vivo and in vitro. J. Neurochem. 65:2377-2380.
Jenkins, H. G., and Ikeda, H. 1992. Tumor necrosis factor causes an increase in axonal transport of protein and demyelination in the mouse optic nerve. J. Neurolog. Sci. 108:99-104.
Butt, A. M., and Jenkins, H. G. 1994. Morphological changes in oligodendrocytes in the intact mouse optic nerve following intravitreal injection of tumor necrosis factor. J. Immunol. 51:27-33.
Simmons, R. D., and Willenborg, D. O. 1990. Direct injection of cytokines into the spinal cord causes autoimmune encephalomyelitis-like inflammation. J. Neurol. Sci. 100:37-42.
McLaurin, J., D'Souza, S., Stewart, J., Blain, M., Beaudet, A., Nalbantoglu, J., and Antel, J. P. 1995. Effect of tumor necrosis factor α and β on human oligodendrocytes and neurons in culture. Int. J. Devl. Neurosci. 13:369-381.
D'Souza, S., Alinauskas, K., McCrea, E., Goodyer, C., and Antel, J. P. 1995. Differential susceptibility of human CNS-derived cell populations to TNF-dependent and independent immune-mediated injury. J. Neurosci. 15:7293-7300.
Merrill, J. E., and Zimmerman, R. P. 1991. Natural and induced cytoxicity of oligodendrocytes by microglia is inhibitable by TGFβ. Glia 4:327-331.
Peck, R., Brockhaus, M., and Frey, J. R. 1989. Cell surface tumor necrosis factor (TNF) accounts for monocyte-and lymphocyte-mediated killing of TNF-resistant target cells. Cell Immunol. 122:1-10.
Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., Kohn, W. J., Aggarwal, B. B., and Goeddel, D. V. 1984. Human tumor necrosis factor; precursor, structure, expression and homology to lymphotoxin. Nature (London) 312:724-729.
Chung, I. Y., and Benveniste, E. N. 1990. Tumor necrosis factor-α production by astrocytes. 1990. J. Immunol. 144:2999-3007.
Selmaj, K. W., Farooq, M., Norton, W. T., Raine, C. S., and Brosnan, C. F. 1990. Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J. Immunol. 144:129-135.
Benveniste, E. N., Kwon, J. B., Chung, W. J., Sampson, J., Pandya, K., and Tang, L.-P. 1994. Differential modulation of astrocyte cytokine gene expression by TGFβ. J. Immunol. 153:5210-5221.
Benveniste, E. N., Sparacio, S. M., Norris, J. G., Grenett, H. E., and Fuller, G. M. 1990. Induction and regulation of regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30:201-212.
Benveniste, E. N., Tang, L. P., and Law, R. M. 1995. Differential regulation of astrocyte TNF-α expression by the cytokines TGF-β, IL-6, and IL-10. Int. J. Dev. Neurosci. 13:341-349.
Hurwitz, A. A., Lyman, W. D., Guida, M. P., Calderon, T. M., and Berman, J. W. 1992. Tumor necrosis factor α induces adhesion molecule expression on human fetal astrocytes. J. Exp. Med. 176:1631-1636.
Shrikant, P., Chung, I. Y., Ballestas, M., and Benveniste, E. N. 1944. Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-α, interleukin-1β. and interferon-γ in astrocytes. J. Neuroimmunol. 51:209-220.
Eddleston, M., and Mucke, L. 1993. Molecular profile of reactive astrocytes. Implication for their role in neurological disease. Neurosci. 54:15-36.
Chung, I. Y., Norris, J. G., and Benveniste, E. N. 1991. Differential tumor necrosis factor α expression by astrocytes from experimental allergic encephalomyelitis-susceptible and-resistant rat strains. J. Exp. Med. 173:801-811.
Gehrmann, J., Matsumoto, Y., and Kreutzberg, G. W. 1995. Microglia: intrinsic immunoeffector cell of the brain. Brain Res. Rev. 20:269-287.
Kreutzberg, G. W. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312-318.
Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane T. E. 1993. Microglial cell cytoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 151:2132-2141.
Hofman, F. M., Hinton, D. R., Johnson, K., and Merrill, J. E. 1989. Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med. 170:607-612.
Selmaj, K., Raine, C. S., Cannella, B., Brosnan, C. F. 1991. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin Invest. 87:949-954.
Cannella, B., and Raine, C. S. 1995. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37:424-435.
Wucherpfennig, K. W., Newcombe, J. L. H., Keddy, C., Cuzner, M. L., and Hafler, D. A. 1992. T cell receptor Vα-Vβ repertoire and cytokine gene expression in active multiple sclerosis lesions. J. Exp. Med. 175:993-1002.
Hofman, F. M., von Hahnwehr, R. I., Dinarello, C. A., Mizel, S. B., Hinton, D., and Merrill, J. E. 1986. Immunoregulatory molecules and IL2 receptors identified in multiple sclerosis lesions. J. Immunol. 136:3239-3245.
Traugott, U., and Lebon, P. 1988. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann. Neurol. 24:243-251.
Woodroofe, M. N., and Cuzner, M. L. 1993. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5:583-588.
Sharief, M. K., and Hentges, R. 1991. Association between tumor necrosis-alpha and disease progression in patients with multiple sclerosis. N. Engl. J. Med. 325:467-472.
Beck, J., Rondot, P., Catinot, L. I., Falcoff, E., Kirchner, H., and Wietzerbin, J. 1988. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in MS: do cytokines trigger off exacerbations? Acta Neurol. Scand. 78:318-323.
Franciotta, D. M., Grimaldi, L. M., Martino, G. V., Piccolo, G., Bergamaschi, R., Citterio, A., and Melzi d'Eril, G. V. 1989. Tumor necrosis factor in serum and cerebrospinal fluid from patients with multiple sclerosis. Ann. Neurol. 26:767-789.
Hauser, S. L., Doolittle, T. H., Lincoln, R., Brown, R. H., and Dinarello, C. A. 1990. Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurol. 40:1735-1739.
Sharief, M. K., and Thompson, E. J. 1992. In vivo relationship of tumor necrosis factor-α to blood-brain barrier damage in patients with active multiple sclerosis. J. Neurimmunol. 38:27-34.
Olsson, T., Wang, W. Z., Hojeberg, B., Kostulas, V., Jiang, Y. P., Andersson, G., Ekre, H. P., and Link, H. 1990. Autoreactive T lymphocytes in multiple sclerosis determined by antigen induced secretion of interferon-gamma. J. Clin. Invest. 86:981-985.
Link, J, Soderstrom, M., Olsson, T., Hojeberg, B., Ljungdahl, A., Gustafsson, A., and Link, H. 1994. Increased TGF-β, IL-4 and IFN-γ in multiple sclerosis. Ann. Neurol. 36:379-386.
Rieckmann, P., Albrecht, M., Kitze, B., Weber, T., Tumani, H., Broocks, A., and Luer, P. S. 1994. Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurol. 44:1523-1526.
Navikas, V., He, B., Link, J., Haglund, M., Soderstrom, M., Fredrickson, S., Ljungdahl, A., Hojeberg, B., Qiao, J., Olsson, T., and Link, H. 1996. Augmented expression of tumor necrosis factor-α and lymphotoxin in mononuclear cells in multiple sclerosis and optic neuritis. Brain 119:213-223.
Rieckmann, P., Albrecht, M., Kitze, B., Weber, T., Tumani, H., Brooks, A., Luer, W., Helwig, A., and Poser, S. 1995. TNF-α mRNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann. Neurol. 37:82-88.
Zipp, F., Weber, F., Huber, S., Sotgiu, S., Czlonkowska, A., Holler, E., Albert, E., Weiss, E. H., Wekerle, H., and Hohlfeld, R. 1995. Genetic control of multiple sclerosis: increased production of lymphotoxin and tumor necrosis factor-α by HLA-DR2+ T cells. Ann. Neurol. 38:723-730.
Gallo, P., Piccino, M. G., Krzalic, L., and Tavolato, B. 1989. Tumor necrosis factor alpha (TNFα) and neurological diseases: failure in detecting TNFα in the cerebrospinal fluid from patients with multiple sclerosis, AIDS dementia complex, and brain tumors. J. Neuroimmunol. 23:41-44.
Peter, J. B., Boctor, F. N., and Tourtellotte, W. W. 1991. Serum and CSF levels of IL-2, sIL-2R, TNF-alpha, and IL-1 beta in chronic progressive multiple sclerosis: expected lack of clinical utility. Neurol. 41:121-123.
Tsukada, N., Miyagi, K., Matsuda, M., Yanagisawa, N., and Yone, K. 1991. Tumor necrosis factor and interleukin-1 in the CSF and sera of patients with multiple sclerosis. J. Neurol. Sci. 102:230-234.
Trotter, J. L., Collins, K. G., and Van Der Veen, R. C. 1991. Serum and cytokine levels in chronic progressive multiple sclerosis: interleukin-2 levels parallel tumor necrosis factor levels. J. Neuroimmunol. 33:29-36.
Maimone, D., Gregory, S., Arnason, B. G., and Reder, A. T. 1991. Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J. Neuroimmunol. 32:67-74.
Lassmann, H., and Vass, K. 1995. Are current immunological concepts of multiple sclerosis reflected by the immunopathology of its lesions? Springer Semin. Immunopathol. 17:77-87.
Lisak, R. P. 1986. Interferon and multiple sclerosis. Ann. Neurol. 20:273.
Olsson, T. 1995. Critical Influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Revs. 133:245-268.
Sun, J. B., Olsson, T., Wang, W. Z., Xiao, B. G., Kostulas, V., Frederikson, S., Ekre, H. P., and Link, H. 1991. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur. J. Immunol. 21:1461-1468.
Sun, J. B., Link, H., Olsson, T., Xiao, B. G., Andersson, G., Ekre, H. P., Linington, C., and Diener, P. 1991. T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J. Immunol. 146:1490-1495.
Panitch, H. S., Hirsch, R. L., Schindler, J., and Johnson, K. P. 1987. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurol. 37:1097-1102.
Paty, D. W., Li, D. K. B., the UBC MS/MRI study group, and the IFNB Multiple Sclerosis Study group. 1993. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: MRI results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurol. 43:662-667.
The IFNB Multiple Sclerosis Study Group. 1993. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655-661.
Panitch, H. S., and Bever, C. T. Jr. 1993. Clinical trials of interferons in multiple sclerosis. What have we learned? J. Neuroimmunol. 46:155-164.
Brod, S. A., Marshall, G. D. Jr., Henninger, E. M., Sriram, S., Khan, M., and Wolinsky, J. S. 1996. Interferon-β1b treatment decreases tumor necrosis factor-α and increases interleukin-6 production in multiple sclerosis. Neurology 46:1633-1638.
Goldberg, M., Belkowski, L. S., and Bloom, B. R. 1990. Regulation of macrophage function by interferon-γ. Somatic cell genetic approaches in murine macrophage cell lines to mechanisms of growth inhibition, the oxidative burst, and expression of the chronic granulomatous disease gene. J. Clin. Invest. 85:563-569.
Collart, M. A., Belin, D., Vassalli, J. D., de Kossodo, S., and Vassalli, P. 1986. Gamma-interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin-1 and urokinase genes, which are controlled by short-lived repressors. J. Exp. Med. 164:2113-2118.
Skoskiewicz, M. J., Calvin, R. B., Schneeberger, E. E., and Russel, P. S. 1985. Widespread and selective induction of major histocompatibility complex determined antigens in vivo by gamma-interferon. J. Exp. Med. 162:1645-1664.
May, M. J. and Ager, A. 1992. ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon γ, tumor necrosis factor-α and interleukin 1β. Eur. J. Immunol. 22:219-226.
Barten, D. M., and Ruddle, N. H. 1994. Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis. J. Neuroimmunol. 51:123-133.
Krakowski, M., and Owens, T. 1996. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26:1641-1646.
Villarroyo, H., Violleau, K., Younes-Chennoufi, A. B., Baumann, N. 1996. Myelin-induced experimental allergic encephalomyelitis in Lewis rats: tumor necrosis factor α levels in serum and cerebrospinal fluid. Immunohistochemical expression in glial cells and macrophages of optic nerve and spinal cord. J. Neuroimmunol. 64:55-61.
Powell, M., Mitchell, D., Lederman, J., Buckmeier, J., Zamvil, S. S., Graham, M., Ruddle, N. H., and Steinman, L. 1990. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalogeniticity. Int. Immunol. 2:539-544.
Merrill, J. E., Kono, D. H., Clayton, J., Ando, D. G., and Hinton, D. R. 1992. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc. Natl. Acad. Sci. USA 89:574-578.
Raine, C. S., Traugott, U., Farooq, M., Bornstein, M. B., and Norton, W. T. 1981. Augmentation of immune-mediated demyelination by lipid haptens. Lab. Invest. 45:174-182.
Pender, M. P. 1988. The pathophysiology of myelin basic protein-induced acute experimental allergic encephalomyelitis in the Lewis rat. J. Neurol. Sci. 86:277-289.
Kennedy, M. K., Torrance, D. S., Picha, K. S., and Mohler, K. M. 1992. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol. 149:2496-2505.
Baker, D., O'Neill, J. K., and Turk, J. L. 1991. Cytokines in the central nervous system of mice during chronic relapsing experimental allergic encephalomyelitis. Cell Immunol. 134:505-510.
Weinberg, A. D., Wyrick, G., Celnick, B., Vainiene, M., Bakke, A., Offner, H., and Vandenbark, A. A. 1993. Lymphokine mRNA expression in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis is associated with host recruited CD45R hi/CD4+ population during recovery. J. Neuroimmunol. 48:105-118.
Renno, T., Lin, J.-Y., Piccirillo, C., Antel, J., Owens, T. 1994. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice. J. Neuroimmunol. 49:1-7.
Issazadeh, S., Mustafa, M., Ljungdahl, A., Hojeberg, B., Dagerling, A., Elde, R., and Olsson, T. 1995. Interferon γ, interleukin 4, and transforming growth factor β in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells. J. Neurosci. Res. 40:579-590.
Racke, M. K., Burnett, D., Pak, S-H, Albert, P. S., Cannella, B., Raine, C. S., McFarlin, D. E., and Scott, D. E. 1995. Retinoid treatment of experimental allergic encephalomyelitis: IL-4 production correlates with improved disease course. J. Immunol. 154:450-458.
Godiska, R., Chantry, D., Dietsch, G. N., and Gray, P. W. 1995. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58:167-176.
Ruddle, N. H., Bergman, C. M., McGrath, K. M., Lingenheld, E. G., Grunnet, M. L., Padula, S. J., and Clark, R. B. 1990. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 172:1193-1200.
Selmaj, K., Raine, C. S., and Cross, A. H. 1991. Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann. Neurol. 30:694-700.
Selmaj, K., Papierz, W., Glabinski, A., and Kohno, T. 1995. Prevention of chronic relapsing experimental autoimmune encephalomyelitis by soluble tumor necrosis factor receptor. J. Neuroimmunol. 56:135-141.
Martin, D., Near, S. L., Bendele, A., and Russell, D. A. 1995. Inhibition of tumor necrosis factor is protective against neurologic dysfunction after active immunization of Lewis rats with myelin basic protein. Experim. Neurol. 131:221-228.
Issazadeh, S., Lorentzen, J. C., Mustafa, M. I., Hojeberg, B., Mussener, A., and Olsson, T. 1996. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-β. J. Neuroimmunol. 69:103-115.
Probert, L., Akassoglou, K., Pasparakis, M., Kontogeorgos, G., and Kollias, G. 1995. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor α. Proc. Natl. Acad. Sci. (USA) 92:11294-8.
Billiau, A., Heremans, H., Vandekerckhove, F., Dijkmans, R., Sobis, H., Meulepas, E., and Carton, H. 1988. Enhancement of experimental autoimmune encephalomyelitis in mice by antibodies against IFN-γ. J. Immunol. 140:1506-1510.
Duong, T. T., Finkelman, F. D., Singh, B., and Strejan, G. H. 1994. Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental autoimmune encephalomyelitis in resistant mouse strains. J. Neuroimmunol. 53:101-107.
Duong, T. T., St. Louis, J., Gilbert, J. J., Finkelman, F. D., and Strejan, G. H. 1992. Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental autoimmune encephalomyelitis in the SJL/J mouse. J. Neuroimmunol. 36:105-115.
Mustafa, M. I., Diener, P., Hojeberg, B., Van der Meide, P., and Olsson, T. 1991. T cell immunity and inteferon-gamma secretion during experimental autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 31:165-177.
Linington, C., Bradl, M., Lassman, H., Brunner, Ch., and Vass, K. 1988. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies against myelin/oligodendroglia glycorprotein. Am. J. Pathol. 130:443-454.
Raine, C. S., Johnson, A. B., Marcus, D., Suzuki, A., and Bornstein, M. B. 1981. Demyelination in vitro. Adsorption studies demonstrate that galactocerebroside is a major target. J. Neurol. Sci. 52:117-131.
Raine, C. S. 1984. Biology of disease. The analysis of autoimmune demyelination: its impact on multiple sclerosis. Lab. Invest. 50:608-635.
Brosnan, C. F., Traugott, U., and Raine, C. S. 1983. Analysis of humoral and cellular events and the role of lipid haptens during CNS demyelination. Acta Neuropathol. Suppl. 9:59-70.
Prineas, J. W. 1985. The neuropathology of multiple sclerosis. Handb. Clin. Neurol. 47:213-257.
Trotter, J., DeJong, L. J., and Smith, M. E. 1986. Opsinization with antimyelin antibody increases the uptake and intracellular metabolism of myelin in inflammatory macrophages. J. Neurochem. 47:779-789.
Sommer, M. A., Forno, L. S., and Smith, M. E. 1992. EAE cerebrospinal fluid augments in vitro phagocytosis and metabolism of CNS myelin by macrophages. J. Neurosci. Res. 32:384-394.
Glynn, P., and Linington, C. 1989. Cellular and molecular mechanisms of autoimmune demyelination in the central nervous system. CRC Critical Rev. Neurobiol. 4:367-385.
Silverman, B. A., Carney, D. F., Johnson, C. A., Vanguri, P., and Shin, M. L. 1984. Isolation of membrane attack complex of complement from myelin membranes treated with serum complement. J. Neurochem. 42:1024-1030.
Johnson, H. M., Torres, B. A., and Soos, J. M. 1996. Superantigens: structure and relevance to human disease. Proc. Soc. Exp. Biol. Med. 212:99-109.
Rodriguez, M., Scheithauer, B. W., Forbes, G., Kelly, P. J. 1993. Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin. Proc. 68:627-636.
Raine, C. S., Scheinberg, L., and Waltz, J. M. 1981. Multiple sclerosis: oligodendrocyte survival and proliferation in an active established lesion. Lab. Invest. 45:534-546.
Prineas, J. W., Kwoon, E. E., Goldenberg, P. Z., Ilyas, A. A., Quarles, R. H., Benjamins, J. A., and Sprinkle, T. J. 1989. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab. Invest. 61:489-503.
Prineas, J. W., Bernard, R. O., Kwon, E. E., Sharer, L. R., and Cho, E. S. 1993. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol. 33:137-151.
Prineas, J. W., Barnard, R. O., Revesz, T., Kwon, E. E., Sharer, L., and Cho E. S. 1993. Multiple Sclerosis. Pathology of recurrent lesions. Brain 116:681-693.
Brück, W., Schmied, M., Suchanek, G., Brück, Y., Breitschopf, H., Poser, S., Piddlesden, S., and Lassmann, H. 1994. Oligodendrocytes in the early course of MS. Ann. Neurol. 35:65-73.
Ozawa, K., Suchanek, G., Breitschopf, H., Bruck, W., Budka, H., Jellinger, K., and Lassmann, H. 1994. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311-1322.
Rosen, J. L., Brown, M. J., Hickey, W. F., and Rostami, A. 1990. Early myelin lesions in experimental allergic neuritis. Muscle and Nerve 13:629-636.
Chakraborty, G., Ziemba, S., and Ledeen, R. W. 1995. Signal transduction induced by TNF-α promotes cholesterol ester formation in mouse brain. J. Neurochem. 64(Suppl.): S61B.
Chakraborty, G., Ziemba, S., Drivas, A., and Ledeen, R. W. 1997. Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-α. In Press.
Ziemba, S., Chakraborty, G., and Ledeen, R. 1996. Evidence for the presence of Mg2+-dependent neutral sphingomyelinase in CNS myelin. J. Neurochem. 66(Suppl.) S546C.
Yamaguchi, S., and Suzuki, K. 1978. A novel magnesium-independent neutral sphingomyelinase associated with rat central nervous system myelin. J. Biol Chem. 253:4090-4092.
Yamanaka, T., Hanada, E., and Suzuki, K. 1981. Acid sphingomyelinase in human brain; improved purification procedures and characterization. J. Biol. Chem. 256:3884-3889.
Chatterjee, S. 1994. Neutral sphingomyelinase action stimulates signal transduction of tumor necrosis factor-α in the synthesis of cholesteryl esters in human fibroblasts. J. Biol. Chem. 269:879-882.
Hannun, Y. A., and Obeid, L. M. 1995. Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20:73-77.
Kolesnick, R. 1992. Ceramide: a novel second messenger. Trends in Cell Biol. 2:232-236.
Kinouchi, K., Brown, G., Pasternak, G., and Donner, D. 1991. Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem. Biophys. Res. Commun. 181:1532-1538.
Ledeen, R. W. 1992. Enzymes and receptors of myelin. Pages 531-570, in Martenson, R. E. (ed), Myelin Biology and Chemistry. CRC Press, Boca Raton, Florida.
Larocca, J. N., Ledeen, R. W., Dvorkin, B., and Makman, M. H. 1987. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin. J. Neurosci. 7:3869-3876.
Larocca, J. N., Cervone, A., and Ledeen, R. 1987. Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium. Brain Res. 436:357-362.
Kahn, D. W., and Morell, P. 1988. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine. J. Neurochem. 50:1542-1550.
Day, N. S., Berti-Mattera, L. N., and Eichberg, J. 1991. Muscarinic cholinergic receptor-mediated phosphoinositide metabolism in peripheral nerve. J. Neurochem. 56:1905-1913.
Iacobelli, S. 1969. The biosynthesis of triphosphoinositide by purified myelin of peripheral nerve. J. Neurochem. 16:909-911.
Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H. 1981. Rapid incorporation in vivo of intracerebrally injected 32Pi into polyphosphoinositides of three subfractions of rat brain myelin. J. Neurochem. 36:594-601.
Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H. 1982. Polyphosphoinositide mono-and diphosphoesterases of three subfractions of rat brain myelin. Neurochem. Res. 7:617-626.
Deshmukh, D. S., Bear, W. D., and Brockerhoff, H. 1978. Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin. J. Neurochem. 30:1191-1193.
Shaikh, N. A., and Palmer, F. B. St. C. 1976. Deposition of lipids in the developing central and peripheral nervous systems of the chicken. J. Neurochem. 26:597-603.
Saltiel, A. R., Fox, J. A., Sherline, P., Sahyoun, N., and Cuatrecasas, P. 1987. Purification of phosphatidylinositol kinase from bovine brain myelin. Biochem. J. 241:759-763.
Johnson, E. M., Maeno, H., and Greengard, P. 1971. Phosphorylation of endogenous proteins of rat brain by cyclic adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 246:7731-7739.
Carnegie, P. R., Dunkley, P. R., Kemp, B. E., and Murray, A. W. 1974. Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases. Nature (London) 249:147-150.
Miyamoto, E., and Kakiuchi, S. 1974. In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′,5′-monophosphate-protein kinases in brain. J. Biol. Chem. 249:2769-2777.
Wu, N.-C., and Ahmad, F. 1984. Calcium-and cyclic AMP-regulated protein kinases of bovine central nervous system myelin. Biochem. J. 218:923-932.
Chakraborty, G., and Ledeen, R. W. 1993. Guanylyl cyclase activity in rat brain myelin and white matter. J. Neurochem. 61:1953-1956.
Grabow, M., Chakraborty, G., and Ledeen, R. W. 1996. Characterization of guanylyl cyclase in purified myelin. Neurochem. Res. 21:457-462.
Larocca, J. N., Golly, F., and Ledeen, R. W. 1991. Detection of G-proteins in purified bovine brain myelin. J. Neurochem. 57:30-38.
Braun, P. E., Horvath, E., Young, V. W., and Bernier, L. 1990. Identification of GTP-binding proteins in myelin and oligodendrocyte membranes. J. Neurosci. Res. 26:16-23.
Berti-Mattera, L. N., Douglas, J. G., Mattera, R., and Goraya, T. Y. 1992. Identification of G protein subtypes in peripheral nerve and cultured Schwann cells. J. Neurochem. 59:1729-1735.
DesJardins, K. C., and Morell, P. 1983. Phosphate groups modifying myelin basic proteins are metabolically labile; methyl groups are stable. J. Cell Biol. 97:438-446.
Gitlin, G., and Singer, M. 1974. Myelin movements in mature mammalian peripheral nerve fibers. J. Morphol. 143:167-176.
Mugnaini, E., Osen, K. K., Schnapp, B., and Friedrich, Jr., V. L. 1977. Distribution of Schwann cell cytoplasm and plasmalemmal vesicles (caveolae) in peripheral myelin sheaths. An electron microscopic study with thin sections and freeze-fracturing. J. Neurocytol. 6:647-668.
Vos, J. P., Giudici, M. L., van der Bijl, P., Magni, P., Marchesini, S., van Golde, L. M. G., and Lopes-Cardozo, M. 1995. Sphingomyelin is synthesized at the plasma membrane of oligodendrocytes and by purified myelin membranes: a study with fluorescent-and radio-labeled ceramide analogues. FEBS Letts. 368:393-396.
Choi, M. U., and Suzuki, K. 1978. A cholesterol-esterifying enzyme in rat central nervous system myelin. J. Neurochem. 31:879-885.
Eto, Y., and Suzuki, K. 1973. Cholesterol ester metabolism in rat brain. J. Biol. Chem. 248:1986-1991.
Eto, Y., and Suzuki, K. 1973. Developmental changes of cholesterol ester hydrolases localized in myelin and microsomes of rat brain. J. Neurochem. 20:1475-1477.
Eto, Y., and Suzuki. K. 1972. Cholesterol esters in developing rat brain: concentration and fatty acid composition. J. Neurochem. 19:109-115.
Li, H., Newcombe, J., Groome, N. P., and Cuzner, M. L. 1993. Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 19:214-223.
Jagannatha, H. M., and Sastry, P. S. 1981. Ethanolamine plasmalogen and cholesterol ester metabolism in experimental allergic encephalomyelitis. Ind. J. Biochem. Biophys. 18:411-416.
Gordon, H. M., Kucera, G., Salvo, R., and Boss, J. 1992. Tumor necrosis factor induces genes involved in inflammation, cellular and tissue repair, and metabolism in murine fibroblasts. J. Immunol. 148:4021-4027.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ledeen, R.W., Chakraborty, G. Cytokines, Signal Transduction, and Inflammatory Demyelination: Review and Hypothesis. Neurochem Res 23, 277–289 (1998). https://doi.org/10.1023/A:1022493013904
Issue Date:
DOI: https://doi.org/10.1023/A:1022493013904