Skip to main content

Alternating-Sign Matrices and Domino Tilings (Part II)

Abstract

We continue the study of the family of planar regions dubbed Aztec diamonds in our earlier article and study the ways in which these regions can be tiled by dominoes. Two more proofs of the main formula are given. The first uses the representation theory of GL(n). The second is more combinatorial and produces a generating function that gives not only the number of domino tilings of the Aztec diamond of order n but also information about the orientation of the dominoes (vertical versus horizontal) and the accessibility of one tiling from another by means of local modifications. Lastly, we explore a connection between the combinatorial objects studied in this paper and the square-ice model studied by Lieb.

References

  1. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, CA, 1982.

    Google Scholar 

  2. E.F. Beckenbach, ed., Applied Combinatorial Mathematics, John Wiley, New York, 1964.

    Google Scholar 

  3. J.H. Conway and J.C. Lagarias, “Tilings with polyominoes and combinatorial group theory,” J. Combin. Theory A 53 (1990), 183–208.

    Google Scholar 

  4. C. Fan and F.Y. Wu, General lattice model of phase transitions, Phys. Rev. B 2 (1970), 723–733.

    Google Scholar 

  5. J.A. Green, Polynomial Representations of GL n , Springer Lecture Notes in Mathematics, Vol. 830, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  6. W. Jockusch, “Perfect matchings and perfect squares,” J. Combin. Theory A, to appear.

  7. P.W. Kasteleyn, “The statistics of dimers on a lattice, I: The number of dimer arrangements on a quadratic lattice,” Physica 27 (1961), 1209–1225.

    Google Scholar 

  8. P.W. Kasteleyn, “Graph theory and crystal physics,” in Graph Theory and Theoretical Phsyics, F. Harary, ed., Academic Press, San Diego, CA, 1967, pp. 43–110.

    Google Scholar 

  9. E. Lieb, “Residual entropy of square ice,” Phys. Rev. 162 (1967), 162–172.

    Google Scholar 

  10. L. Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979, problem 4.29.

    Google Scholar 

  11. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1979.

    Google Scholar 

  12. W.H. Mills, D.P. Robbins, and H. Rumsey, Jr., “Proof of the MacDonald conjecture,” Invent. Math. 66 (1982), 73–87.

    Google Scholar 

  13. W.H. Mills, D.P. Robbins, and H. Rumsey, Jr., “Alternating sign matrices and descending plane partitions,” J. Combin. Theory A 34 (1983), 340–359.

    Google Scholar 

  14. J.K. Percus, Combinatorial Methods, Courant Institute of Mathematical Sciences, 1969.

  15. G. Pólya and S. Szegö, Problems and Theorems in Analysis, Vol. II, Springer, New York, 1976, p. 134, problem 132.

    Google Scholar 

  16. D.P. Robbins, “The story of 1, 2, 7, 42, 429, 7436,...,” Math. Intelligencer 13 (2) (1991), 12–19.

    Google Scholar 

  17. D.P. Robbins and H. Rumsey, Jr., “Determinants and alternating sign matrices,” Adv. Math. 62 (1986), 169–184.

    Google Scholar 

  18. A.E. Spencer, Problem E 2637, Amer. Math. Monthly 84 (1977), 134–135; solution published in 85 (1978), 386–387.

    Google Scholar 

  19. R. Stanley, Enumerative Combinatorics, Vol. I. Brooks-Cole, Belmont, MA, 1986.

    Google Scholar 

  20. R. Stanley, “A baker's dozen of conjectures concerning plane partitions,” in Combinatoire Énumérative, Springer Lecture Notes in Mathematics, Vol. 1234, (G. Labelle and P. Leroux, eds.), Springer-Verlag, Berlin, 1986, pp. 285–293.

    Google Scholar 

  21. W. Thurston, “Conway's tiling groups,” Amer. Math. Monthly 97 (1990), 757–773.

    Google Scholar 

  22. T. Tokuyama, “A generating function of strict Gelfand patterns and some formulas on characters of general linear groups,” J. Math. Soc. Japan 40 (1988), 671–685.

    Google Scholar 

  23. B.-Y. Yang, “Three enumeration problems concerning Aztec diamonds,” doctoral thesis, Massachusetts Institute of Technology, Cambridge, MA, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elkies, N., Kuperberg, G., Larsen, M. et al. Alternating-Sign Matrices and Domino Tilings (Part II). Journal of Algebraic Combinatorics 1, 219–234 (1992). https://doi.org/10.1023/A:1022483817303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022483817303

  • tiling
  • domino
  • alternating-sign matrix
  • monotone triangle
  • representation
  • square ice