Skip to main content
Log in

Random fixed point theorems for a certain class of mappings in banach spaces

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let (Ω, Σ) be a measurable space and C a nonempty bounded closed convex separable subset of p-uniformly convex Banach space E for some p > 1. We prove random fixed point theorems for a class of mappings T: Ω × CC satisfying: for each x, yC, ω ∈ Ω and integer n ≥ 1,

$$\left\| {T^\user1{n} (\omega ,\user1{x}) - T^\user1{n} (\omega ,\user1{x})} \right\|$$
$$ \geqslant \user1{a}(\omega ) \cdot \left\| {\user1{x} - \user1{y}} \right\| + \user1{b}(\omega )\left\{ {\left\| {\user1{x} - T^\user1{n} (\omega ,\user1{x})} \right\| + \left\| {\user1{y} - T^\user1{n} (\omega ,\user1{y})} \right\|} \right\}$$
$$ + \user1{c}(\omega )\left\{ {\left\| {\user1{x} - T^\user1{n} (\omega ,\user1{y})} \right\| + \left\| {\user1{y} - T^\user1{n} (\omega ,\user1{x})} \right\|} \right\},$$

where a, b, c: Ω → [0, ∞) are functions satisfying certain conditions and T n(ω, x) is the value at x of the n-th iterate of the mapping T(ω, ·). Further we establish for these mappings some random fixed point theorems in a Hilbert space, in L p spaces, in Hardy spaces H p and in Sobolev spaces H k,p for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barros-Neto: An Introduction to the Theory of Distribution. Dekker, New York, 1973.

    Google Scholar 

  2. A. T. Bharucha-Reid: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–645.

    Google Scholar 

  3. A. T. Bharucha-Reid: Random Integral Equations. Academic Press, New York and London, 1977.

    Google Scholar 

  4. Gh. Bocsan: A general random fixed point theorem and applications to random equations. Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379.

    Google Scholar 

  5. W. L. Bynum: Normal structure coefficient for Banach space. Pacific J. Math. 86 (1980), 427–436.

    Google Scholar 

  6. E. Casini and E. Maluta: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. TMA 9 (1985), 103–108.

    Google Scholar 

  7. C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1977.

    Google Scholar 

  8. S. S. Chang: Random fixed point theorems for continuous random operators. Pacific J. Math. 105 (1983), 21–31.

    Google Scholar 

  9. J. Daneš: On densifying and related mappings and their applications in nonlinear functional analysis. In: Theory of nonlinear Operators, Proc. Summer School. GDR, Akademie-Verlag, Berlin, 1974, pp. 15–56.

    Google Scholar 

  10. N. Dunford and J. Schwarz: Linear Operators. Vol. I, Interscience, New York, 1958.

    Google Scholar 

  11. W. H. Duren: Theory of Hp Spaces. Academic Press, New York, 1970.

    Google Scholar 

  12. H. W. Engl: Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351–360.

    Google Scholar 

  13. K. Goebel and W. A. Kirk: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia. Math. 47 (1973), 135–140.

    Google Scholar 

  14. S. Itoh: A random fixed point theorem for a multivalued contraction. Pacific J. Math 68 (1977), 85–90.

    Google Scholar 

  15. S. Itoh: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273.

    Google Scholar 

  16. C. J. Himmelberg: Measurable relations. Fund. Math. 87 (1975), 53–72.

    Google Scholar 

  17. T. C. Lim: Fixed point theorems for uniformly Lipschitzian mappings in Lp spaces. Nonlinear Anal. 7 (1983), 555–563.

    Google Scholar 

  18. T. C. Lim: On the normal structure coefficient and the bounded sequence coefficient. Proc. Amer. Math. Soc. 88 (1983), 262–264.

    Google Scholar 

  19. T. C. Lim, H. K. Xu and Z. B. Xu: An Lp inequalities and its applications to fixed point theory and approximation theory. In: Progress in Approximation Theory. Academic Press, 1991, pp. 609–624.

  20. T. C. Lin: Random approximations and random fixed point theorems for non-self maps. Proc. Amer. Math. Soc. 103 (1988), 1129–1135.

    Google Scholar 

  21. J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces II—Function Spaces. Springer-Verlag, New York, Berlin, 1979.

    Google Scholar 

  22. E. A. Lifshitz: Fixed point theorem for operators in strongly convex spaces. Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (In Russian.)

    Google Scholar 

  23. A. Nowak: Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. Math. 34 (1986), 487–494.

    Google Scholar 

  24. N. S. Papageorgiou: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 32 (1987), 507–514.

    Google Scholar 

  25. N. S. Papageorgiou: Deterministic and random fixed point theorems for single valued and multivalued functions. Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61.

    Google Scholar 

  26. S. A. Pichugov: Jung's constant of the space Lp. Mat. Zametki 43 (1988), 609–614 (In Russian.); Math. Notes 43 (1988), 348–354.

    Google Scholar 

  27. B. Prus and R. Smarzemski: Strongly unique best approximations and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1987), 10–21.

    Google Scholar 

  28. S. Prus: On Bynum's fixed point theorem. Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545.

    Google Scholar 

  29. S. Prus: Some estimates for the normal structure coefficient in Banach spaces. Rend. Circ. Mat. Palermo XL(2) (1991), 128–135.

    Google Scholar 

  30. L. E. Rybinski: Random fixed points and viable random solutions of functional differential inclusions. J. Math. Anal. Appl. 142 (1989), 53–61.

    Google Scholar 

  31. V. M. Sehgal and C. Waters: Some random fixed point theorems for condensing operators. Proc. Amer. Math. Soc. 90 (1984), 425–429.

    Google Scholar 

  32. V. M. Sehgal and S. P. Singh: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94.

    Google Scholar 

  33. R. Smarzewski: Strongly unique best approximations in Banach spaces II. J. Approx. Theory 51 (1987), 202–217.

    Google Scholar 

  34. R. Smarzewski: On the inequality of Bynum and Drew. J. Math. Anal. Appl. 150 (1990), 146–150.

    Google Scholar 

  35. K. K. Tan and X. Z. Yuan: Some random fixed point theorems. In Fixed Point Theory and Applications (K. K. Tan, ed.). World Scientific, Singapore, 1992, pp. 334–345.

    Google Scholar 

  36. K. K. Tan and X. Z. Yuan: On deterministic and random fixed points. Proc. Amer. Math. Soc 119 (1993), 849–856.

    Google Scholar 

  37. K. K. Tan and H. K. Xu: Fixed point theorems for Lipschitzian semigroups in Banach spaces. Nonlinear Anal. 20 (1993), 395–404.

    Google Scholar 

  38. D. H. Wagner: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903.

    Google Scholar 

  39. H. K. Xu: Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces. J. Math. Anal. Appl. 152 (1990), 391–398.

    Google Scholar 

  40. H. K. Xu: Some random fixed point theorems for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 395–400.

    Google Scholar 

  41. H. K. Xu: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (1991), 1127–1138.

    Google Scholar 

  42. H. K. Xu: A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space. Proc. Amer. Math. Soc. 117 (1993), 1089–1092.

    Google Scholar 

  43. H. K. Xu: Random fixed point theorems for nonlinear uniformly Lipschitzian mappings. Nonlinear Anal. 26 (1996), 1302–1311.

    Google Scholar 

  44. C. Zalinescu: On uniformly convex functions. J. Math. Anal. Appl. 95 (1988), 344–374.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.S., Cho, Y.J., Kang, S.M. et al. Random fixed point theorems for a certain class of mappings in banach spaces. Czechoslovak Mathematical Journal 50, 379–396 (2000). https://doi.org/10.1023/A:1022483205068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022483205068

Navigation