Skip to main content
Log in

Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the Ocean

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

We develop and apply visualization and quantification methods to reconstruct hydrothermal plumes in 3D from acoustic images and to make the first direct measurements from the reconstructions of scalar properties that describe the behavior of two buoyant plumes discharging from adjacent black smoker chimneys. The actual behavior is then compared to that predicted by a classic simple buoyant plume model. The images are reconstructed as isointensity surfaces of backscatter from particulate matter suspended in the plumes. The measurements pertinent to the role of the plumes as agents of dispersal of heat and mass into the ocean include change with height of diameter, particle distribution, dilution, centerline attitude, surface protrusions, and connectivity. The protrusions are the surface expression of eddies and appear to follow a bifurcating helical flow pattern that resemble simulation of the naturally forced flow of coherent vortex rings as the eddies rise with the buoyant plume. These direct measurements and the derived entrainment coefficient are generally consistent with behavior predicted by the simple buoyant plume model and support engulfment by vortex shedding as a primary mechanism for entrainment of surrounding seawater. Deviations from predicted buoyant plume behavior are diagnostic of particle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armishev, S. V., and Berezutskii, A. V., 1988, Sonar detection and location of hydrothermal jets, Sov. Phys. Acoust. 34, 541-543.

    Google Scholar 

  • Baker, E. T., German, C. R., and H. Elderfield, 1995, Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91, American Geophysical Union, 47-71.

  • Banks, D. C., and Singer, B. A., 1995, A predictor-corrector technique for visualizing unsteady flow, IEEE Trans., Visualization and Computer Graphics 1(2), 151-163.

    Google Scholar 

  • Batchelor, G. K., 1954, Heat convection and buoyancy effects in fluids, Q. J. R.. Met. Soc. 80, 339-358.

    Google Scholar 

  • Batchelor, G. K., 1957, Wave scattering due to turbulence, in Symposium on Naval Hydraulics, edited by F. S. Sherman, National Academy of Sciences, Washington, D.C., 409-423.

    Google Scholar 

  • Bemis, K. G., Rona, P. A., Jackson, D., Jones, C., and Wen, T., 1997, A comparison of black smoker hydrothermal plumes at Monolith Vent, Juan de Fuca Ridge and EPR 21 N, EOS, Trans. Amer. Geophys. Un., 78(46) Fall Meeting Suppl., Abstract V52D-4.

  • Bemis, K. G., Rona, P. A., Jackson, D. R., Jones, C. D., Mitsuawa, K., Palmer, D., Silver D., and Gudlavalletti, R., 2001, Timeaveraged images and quantifications of seafloor hydrothermal plumes from acoustic imaging data: a case study at Grotto Vent, Endeavour Segment Seafloor Observatory, EOS, Trans Am. Geophys. Un., 81(47), Fall Meeting Suppl., Abstract OS21B-0446.

  • Bemis, K. G., Rona, P. A., Jackson, D., Jones, C., Wen, T., D., and Silver, D., andMitsuzawa, K., A comparison of black smoker hydrothermal plume behavior at Monolith Vent and at Clam Acres vent field: dependence on source configuration, Marine Geophys. Res. this issue.

  • Bemis, K., Silver, D., Rona, P. A., and Feng, C., 2000, Case study: a methodology for plume visualization with application to realtime acquisition and navigation, IEEE Visualization 2000, IEEE, 481-494.

  • Campbell, A. C., Palmer, M. R., Klinkhmmer, G. P., Bowers, T. S., Edmond, J. M., Lawrence, J. R., Casey, J. F., Thompson, G., Humphris, S., Rona, P., and Karson, J.A., 1988, Chemistry of hot springs on the Mid-Atlantic Ridge, Nature 335, 514-519.

    Google Scholar 

  • Carey, S. N., Sigurdson, H. and Sparks, R. S. J., 1988, Experimental studies of particle-laden plumes, J. Geophys. Res. 93, 15,314-15,326.

    Google Scholar 

  • Chen, C. J., and Rodi, W., 1980, Vertical turbulent buoyant jets: A review of experimental data, Science and Applications of Heat and Mass Transfer Series, v. 4, Ed. D. B. Spalding, Pergammon Press, 1-83.

  • Converse, D. R., Holland, H. D., and Edmond, J. M., 1984, Flow rates in the axial hot springs of the East Pacific Rise (21 N): Implications for the heat budget and the formation of massive sulfide deposits, Earth Planet. Sci. Lett. 69, 159-175.

    Google Scholar 

  • Colbourne, E. B., and Hay, A. E., 1990, An acoustic remote sensing and submersible study of an Arctic submarine spring plume, J. Geophys. Res. 95, 13,219-13,234.

    Google Scholar 

  • Ernst, G. G. J., Sparks, R. S. J., Carey, S. N., and Bursik, M. I., 1996, Sedimentation from turbulent jets and plumes, J. Geophys. Res. 101, 5575-5589.

    Google Scholar 

  • Feely, R. A., Massoth, G. J., Trefry, J. H., Baker, E. T., Paulson, A. J., and Lebon, G. T., 1994, Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge, J. Geophys. Res. 99, 4985-5006.

    Google Scholar 

  • Feely, R. A., Lewison, M., Massoth, G. J., Robert-Baldo, G., Lavelle, J. W., Byrne, R. H., Von Damm, K. L., and Curl, Jr., H. C., 1987, Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge, J. Geophys. Res. 92, 11,347-11,363.

    Google Scholar 

  • Feher, A. and Zabusky, N. J., 1996, An interactive imaging environment for scientific visualization and quantification (visiometrics), Intern. J. Imag. Syst. Technol. 7, 121-130.

    Google Scholar 

  • Feng, C., Silver, D., Bemis, K. G., and Rona, P. A., 1999, Acoustic imaging manual: object segmentation and feature quantification, Technical Report CAIP-TR-242, CAIP Center, Rutgers University, 55 p.

  • Fernandez, V. M, Silver, D., and Zabusky, N. J., 1996, Visiometrics of complex physical processes: Diagnosing vortex-dominated flows, Computers in Physics 10, 463-470.

    Google Scholar 

  • Fischer, H. B., List, J. E., Koh, R. C., Imberger, J., and Brooks, N. H., 1979, Mixing in Inland and Coastal Waters, Academic Press, New York, 483 p.

    Google Scholar 

  • Goodman, L., Oeschger, J., and Szargowicz, D., 1992, Ocean acoustics turbulence study: acoustic scattering from a buoyant axisymmetric plume, J. Acoust. Soc. Am. 91(6), 3212-3227.

    Google Scholar 

  • Hay, A. E., 1984, Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord, Science 225, 1154-1156.

    Google Scholar 

  • Helfrich, K. R and Speer, K. G., 1995, Oceanic hydrothermal circulation: mesoscale and basin-scale flow, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Geophysical Monograph 91, American Geophysical Union, 466 p., p. 347-356.

  • Jackson, D. R., Jones, C. D., Rona, P. A., and Bemis, K. G., 2000, Doppler measurement of black smoker flow velocity, EOS, Trans. Am. Geophys Un. 81(48), F641.

    Google Scholar 

  • Lavelle, J. W, 1997, Buoyancy-driven plumes in rotating, stratified cross-flows: plume dependence on rotation, turbulent mixing, and cross-flow strength, J. Geophys. Res. 104, 3201-3209.

    Google Scholar 

  • Lesieur, M., 1997, Turbulence in Fluids (3rd Edition), Kluwer Academic Publishers, Dordrecht, Boston, London, 515 p.

    Google Scholar 

  • Little, S. A., Stolzenbach, K. D., and von Herzen, R. P., 1987, Measurements of plume flow from a hydrothermal vent field, J. Geophys. Res. 92, 2587-2596.

    Google Scholar 

  • Lorensen, W. E., and Cline, H. E., 1987, Marching cubes: a high resolution 3D surface construction algorithm, ACM Siggraph Proc. 21(4), 163-166.

    Google Scholar 

  • Lupton, J. E., 1995, Hydrothermal plumes: near and far field, In, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91, American Geophysical Union, 317-346.

  • Macdonald, K. C., Becker, K., Speiss, F. N., and Ballard, R.D., 1980, Hydrothermal heat flux of the 'black smoker' vents on the East Pacific Rise, Earth Planet. Sci. Lett. 4, 1-7.

    Google Scholar 

  • McDuff, R. E., 1988, Effects of vent fluid properties on the hydrography of hydrothermal plumes, EOS, Trans. Am. Geophys. Un. 69, 1497.

    Google Scholar 

  • McDuff, R. E., 1995, Physical dynamics of deep-sea hydrothermal plumes, In, Seafloor Hydrothermal Systems, Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91, Am. Geophys. Un., 357-368.

  • Middleton, G. V., and Hampton, M. A., 1976, Subaqueous sediment transport and deposition by sediment gravity flows, in Stanley, D. J. and Swift, D. J. P., Marine Sediment Transport and Environmental Management, New York, John Wiley, 197-218.

    Google Scholar 

  • Middleton, J. M., and Thomson, R. E., 1986, Modeling the rise of hydrothermal plumes, Can. Tech. Rep. Hydrogr. Ocean Sci., 69. 18 pp., Dept. of Fish. and Oceans, Sidney. B.C.

    Google Scholar 

  • Morton, B. R., Forced plumes, J. Fluid Mech. 5, 151-163.

  • Morton, B. R., Taylor, G. I., and Turner, J. S., 1956, Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. London, Ser. A 234, 1-23.

    Google Scholar 

  • Mottl, M. J. and McConachy, T. F., 1990, Chemical processes in buoyant plumes on the East Pacific Rise near 21 N, Geochim. Cosmochim. Acta 54, 1911-1927.

    Google Scholar 

  • Oeschger, J. and Goodman, L., 1996, Acoustic scattering from a thermally driven buoyant plume, J. Acoust. Soc. Am. 100(3), 1401-1452.

    Google Scholar 

  • Orr, M. H., and Hess, F. R., 1978, Remote acoustic monitoring of natural suspensate distributions, active suspensate resuspension and slope/shelf water intrusions, J. Geophys. Res. 83, 4062-4068.

    Google Scholar 

  • Palmer, D. R., 1996, Rayleigh scattering from nonspherical particles, J. Acoust. Soc. Am. 99(04; Pt. 1), 1901-1912.

    Google Scholar 

  • Palmer, D. R., Rona, P. A., and Mottl, M. J., 1986, The acoustics of 'black smoker' hydrothermal plumes, J. Acoust. Soc, Am. 80, 888-898.

    Google Scholar 

  • Papanicolaou, P. N. and List, E. J., 1988, Investigations of round vertical turbulent jets, J. Fluid Mech. 195, 341-391.

    Google Scholar 

  • Peigl, L. and Tiller, W., 1995, The NURBS Book, Springer.

  • Post, F., van Walsum, T., Post, F. H., and Silver, D., 1995, Iconic techniques for feature visualization, In, Proceedings of IEEE Visualization '95, Atlanta, Georgia, 288-295.

  • Rona, P., Bemis, K. G., Kenchammana-Hosekote, D., and Silver, D., 1998, Acoustic imaging and visualization of plumes discharging from black smoker vents on the deep seafloor, IEEE Visualization '98, IEEE, 475-479.

  • Rona, P. A., Palmer, D. R., Jones, C., Chayes, D. A., Czarnecki, M., Carey, E. W., and Guerrero, J., 1991, Acoustic imaging of hydrothermal plumes, East Pacific Rise, 21 N, 109 W, Geophys. Res. Lett. 18, 2233-2236.

    Google Scholar 

  • Rouse, H., Yih, C.-S., and Humphreys, H. W., 1952, Gravitational convection from a boundary source, Tellus 4, 201-210.

    Google Scholar 

  • Rudnicki, M. D., 1995, Particle fallout and cycling within the buoyant and non-buoyant plume above the TAG vent field, In L. M. Parson, C. L. Walker, and D. R. Dixon (eds.), Hydrothermal Vents and Processes, Geol. Soc. London Spec. Pub. 87, 387-396.

  • Rudnicki, M. D., and Elderfield, H., 1992, Theory applied to the Mid-Atlantic ridge hydrothermal plumes: the finite difference approach, J. Volcanol. Geotherm. Res. 50, 161-172.

    Google Scholar 

  • Rudnicki, M. D., and Elderfield, H., 1993, A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge, Geochim. Cosmochim. Acta 57, 2939-2957.

    Google Scholar 

  • Samtaney, R., Silver, D., Zabusky, N., and Cao, J., 1994, Visualizing features and tracking their evolution, IEEE Computer 27(7), 20-27.

    Google Scholar 

  • Schmidt, W., Angew, Z, 1941, Math. Mech. 21, 265-351.

    Google Scholar 

  • Silver, D., 1995, Object-oriented visualization, IEEE Computer Graphics and Applications 15(3).

  • Silver, D., Zabusky, N. J., Fernandez, V., Gao, M., and Samtaney, R., 1991, Ellipsoidal quantification of evolving phenomena, In N. M. Patrikalakis, Editor, Visualization of Physical Phenomena, Proceedings of Computer Graphics International '91 Symposium, Springer-Verlag, 573-588.

  • Silver, D. and Zabusky, N. J., 1993, Quantifying visualizations for reduced modeling in nonlinear science: Extracting structures from data sets, J. Visual Commun. Image Repres. 4(1), 46-61.

    Google Scholar 

  • Sparks, R. S., Bursik, M. I., Carey, S. N., Gilbert, J. S., Glaze, L. S., Sigurdsson, H., Woods, A. W., 1997, Volcanic Plumes, Wiley, New York, 574 p.

    Google Scholar 

  • Sparks, R. S. J., Carey, S. N., and Sigurdsson, H., 1991, Sedimentation from gravity currents generated by turbulent plumes, Sedimentology 38, 839-856.

    Google Scholar 

  • Speer, K. G., 1989, A forced baroclinic vortex around a hydrothermal plume, Geophys. Res. Lett. 16, 461-464.

    Google Scholar 

  • Speer, K. G., and Rona, P. A., 1989, A model of an Atlantic and Pacific hydrothermal plume. J. Geophys. Res. 94, 6213-6220.

    Google Scholar 

  • Thomson, R. E., Gordon, R. L., and Dymond, J., 1989, Acoustic Doppler current profiler observations of a mid-ocean ridge hydrothermal plume, J. Geophys. Res. 94, 4709-4720.

    Google Scholar 

  • Thorne, P. D, Vincent, C. E, Hardcastle, P. J., Rehamn, S., and Pearson, N., 1991, Measuring suspended sediment concentrations using acoustic backscatter devices, Marine Geol. 98, 7-16.

    Google Scholar 

  • Turner, J. S., 1973, Buoyancy Effects in Fluids, Cambridge University Press, London and New York, 367 p.

    Google Scholar 

  • Turner, J. S., 1986, Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows, J. Fluid. Mech. 173, 431-471.

    Google Scholar 

  • Urbin, G., 1995, Calcul par simulation des grandes echelles de la transition turbulente d'un jet libre rond, Report CEA-Grenoble STR/LML/95-335.

  • Walker, S. L., and Baker, E. T., 1988, Particle-size distributions within hydrothermal plumes over the Juan de Fuca Ridge, Marine Geology, 78, 217-226.

    Google Scholar 

  • Zabusky, N. J., Silver, D., Pelz, R. and Vizgroup '93, 1993, Visiometrics, juxtaposition and modeling, Physics Today 46, 24-31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rona, P., Bemis, K., Silver, D. et al. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the Ocean. Marine Geophysical Researches 23, 147–168 (2002). https://doi.org/10.1023/A:1022481315125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022481315125

Keywords

Navigation