Skip to main content
Log in

Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinized peridotite? Evidence from the Vøring Margin, NE Atlantic

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

On the Vøring volcanic passive margin offshore mid-Norway, NE Atlantic, a lower crustal body with P-wave velocities in the range of 7.1–7.7 km/s has been mapped by twenty two-dimensional Ocean Bottom Seismograph (OBS) profiles. The main aim of the present paper is to evaluate to what extent the lower crust is consistent with magmatic intrusions or serpentinized peridotite. The relatively low V p/V s ratios of 1.75–1.78 modelled for the lower crust under the continental part of the Vøring Plateau are consistent with mafic intrusions mixed with blocks of stretched continental crust, but not with the presence of partially serpentinized peridotites. The lower crustal high-velocity body is restricted to the area of the Late Cretaceous/Early Tertiary rift that lead to continental break-up in Early Eocene. The same model can explain the observations in the northern Vøring Basin, but in the central and southern Vøring Basin the seismic velocities do not preclude a model involving serpentinized peridotite in addition to intrusions and continental remnants. On the west Iberia non-volcanic margin a similar layer is interpreted as serpentinized peridotite. The existence of Moho reflections, the observation of S-wave anisotropy but absence of P-wave anisotropy, uncertainties regarding supply of water to allow for significant serpentinization and very low stretching factors compared with the west Iberia Margin, are among factors that argue against the presence of serpentinized peridotite in the Vøring Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, D. R. and Rossman, G. R., 1992, Water in Earth's Mantle: the role of nominally anhydrous minerals, Science 255, 1391-1397.

    Google Scholar 

  • Berndt, C., Mjelde, R., Planke, S., Faleide, J. I. and Shimamura, H., 2001, Controls on the tectono-magmatic evolution of a volcanic transform margins the Vøring Transform Margin, NE Atlantic, Mar. Geophys. Res. 22, 133-152.

    Google Scholar 

  • Blystad, P., Brekke, H., Færseth, R. B., Larsen, B. T., Skogseid, J., Tørudbakken, B., 1995, Structural elements of the Norwegian continental shelf. Part 2: The Norwegian Sea Region. NPD Bull. 8, Norwegian Petroleum Directorate.

  • Brekke, H., 2000, The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Vøring and Møre basins. in: Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society Special Publication, 167. The Geological Society, London, pp. 327-378.

    Google Scholar 

  • Bøen, F., Eggen, S. and Vollset, J., 1984, Structures and basins of the margin from 62-69°N and their development. in: Spencer, A. M. et al. (eds.), Petroleum Geology of the North European Margin, Norwegian Petroleum Society, Graham and Trotman, London, pp. 3-28.

    Google Scholar 

  • Carlson, R. L. and Miller, D. J., 1997, A new assessment of the abundance of serpentinite in the oceanic crust, Geophys. Res. Lett. 24, 457-460.

    Google Scholar 

  • Chian, D., Louden, K. E., Minshull, T. A. and Whitmarsh, R. B., 1999, Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: Ocen Drilling Program (Legs 149 and 173) transect, J. Geophys. Res. 104, 7443-7462.

    Google Scholar 

  • Christensen, N. I., 1966, Elasticity of ultrabasic rock, J. Geophys. Res. 71, 5921-5931.

    Google Scholar 

  • Christensen, N. I., 1972, The abundance of serpentinites in the oceanic crust, J. Geology 80, 709-719.

    Google Scholar 

  • Christensen, N. I., 1978, Ophiolites, seismic velocities and oceanic crustal structure, Tectonophysics 47, 131-157.

    Google Scholar 

  • Christensen, N. I., 1982, Seismic velocities. in: Carmichael, R. S. (ed.), Handbook of Physical Properties of Rocks, Vol. II. CRS Press, Florida, pp. 12-28.

    Google Scholar 

  • Christensen, N. I., 1996, Poissons's ratio and crustal seismology, J. Geophys. Res. 101, 3139-3156.

    Google Scholar 

  • Christensen, N. I., Wepfer, W. W. and Baud, R. D., 1989, Seismic properties of sheeted dikes from hole 504B, ODP leg 111. Proc. Ocean Drill. Progr. Sci. Res. 111, 171-174.

    Google Scholar 

  • Clift, P. D., 1996, Temperature anomalies under the Northeast Atlantic rifted volcanic margins, Earth Planet. Sci. Lett. 146, 195-212.

    Google Scholar 

  • Clift, P. D. and Turner, J., Ocean Drilling Program Leg 152 Scientific Party., 1995, Dynamic support by the Icelandic plume and vertical tectonics of the northeast Atlantic continental margins, J. Geophys. Res. 100, 24473-24486.

    Google Scholar 

  • Dalland, A. Worsley, D., Ofstad, K., 1988. The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Vøring and Møre basins. in: Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin, Geol. Soc. Spec. Publ., 167. Geol. Soc., London, pp. 327-378.

    Google Scholar 

  • Digranes, P. Mjelde, R., Kodaira, S., Shimamura, H., Kanazawa, T., Shiobara, H. and Berg, E. W., 1998, A regional shear-wave velocity model in the central Vøring Basin, N. Norway, using three-component Ocean Bottom Seismograph, Tectonophysics 293, 157-174.

    Google Scholar 

  • Dixon, J. E., Stolper, E. M. and Delaney, J. R., 1988, Infrared spectroscopic measurements of CO2 and H2 O in Juan de Fuca Ridge basaltic glasses, Earth Planet. Sci. Lett. 90, 87-104.

    Google Scholar 

  • Eldholm, O. and Mutter, J. C., 1986, Basin structure of the Norwegian Margin from analysis of digitally recorded sonobuoys, J. Geophys. Res. 91, 3763-3783.

    Google Scholar 

  • Eldholm, O. and Grue, K., 1994, North Atlantic volcanic margins, dimension and production rates, J. Geophys. Res. 99, 2955-2968.

    Google Scholar 

  • Eldholm, O., Thiede, J. and Taylor, E., 1987, Evolution of the Norwegian Continental Margin: Background and Objectives. in: Proc., Init. Repts., (Pt. A), ODP, 104, pp. 5-25.

    Google Scholar 

  • Eldholm, O., Thiede, J. and Taylor, E., 1989, Evolution of the Vøring Volcanic Margin. Proc. ODP, Sci. Results 104. College Station, TX (Ocean Drilling Program), pp. 1033-1065.

    Google Scholar 

  • Fryer, P., Ambos, E. L. and Hussong, D. M., 1985, Origin and emplacement of Mariana forearc seamounts, Geology 13, 774-777.

    Google Scholar 

  • Gebrande, H., 1982, Elastic wave velocities and constants of elasticity of rocks at room temperature and pressures up to 1 GPa. in: Angenheister, G. (ed.), Physical properties of rocks. Springer-Verlag Berlin 1, 35-99.

  • Helmberger, D. V. and Morris, G. B., 1970, A travel time and amplitude interpretation of a marine refraction profile: Transformed shear waves, Bull. Seismol. Soc. Am. 60, 593-600.

    Google Scholar 

  • Holbrook, W. S., Mooney, W. D. and Christensen, N. J., 1992, Seismic velocity structure of the deep continental crust. in: Fountain, D., Arculus, R., Kay, R. W. (eds.), Continental Lower crust. Elsevier, Amsterdam, pp. 451-464.

    Google Scholar 

  • Horen, H., Zamora, M. and Dubuisson, G., 1996, Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge, Geophys. Res. Lett. 23, 9-12.

    Google Scholar 

  • Itturino, G. J., Christensen, N. I., Kirby, S. and Salisbury, M. H., 1991. Seismic velocities and elastic properties of oceanic gabbroic rocks from hole 735B. Proc. of the Ocean Drilling Program, Sci. Res. 118, 227-244.

    Google Scholar 

  • Itturino, G. J., Christensen, N. I., Becker, K., Boldreel, L. O., Harvey, P. K. H. and Pezard, P., 1995, Physical properties and elastic constants od upper crustal rocks from core-log measurements in Hole 504B. Proc. of the Ocean Drilling Program, Sci. Res. 137/140, 273-291.

    Google Scholar 

  • Itturino, G. J., Miller, D. J. and Christensen, N. I., 1996. Velocity behaviour of lower crustal and upper mantle rocks from a fast-spreading ridge at Hess Deep. Proc. of the Ocean Drilling Program, Sci. Res. 147, 417-440.

    Google Scholar 

  • Iwamori, H., 1998, Transportation of H2 O and melting in subduction zone. Earth Planet. Sci. Lett. 160, 65-80.

    Google Scholar 

  • Jamtveit, B., Brooker, R., Brooks, K., Larsen, L. M. and Pedersen, T., 2001, The water content of olivines from the North Atlantic Volcanic Province. Earth Planet. Sci. Lett. 186, 401-415.

    Google Scholar 

  • Kamimura, A., Kasahara, J., Shinohara, M., Hino, R., Shiobara, H., Fujie, G. and Kanazawa, T., 2002, Crustal structure study at the Izu-Bonin subduction zone around 31°N: implications of serpentinized materials along the subduction plate boundary, Phys. Earth Planet. Int. (in press).

  • Kamimura, A., 2002, A study of the seismic velocity structure at the Izu-Bonin subduction zone, Thesis of Dr. Sci., University of Tokyo, 186 pp.

  • Kanazawa, T., 1993, Technical Description of TK92-type ocean bottom seismometer. in: Investigation of the central and northern part of the Vøring Basin by use of Ocean Bottom Seismographs, R/V Håkon Mosby 22 aug.-24 sept. 1992. Cruise report, Mjelde, R., 3 pp.

  • Kasahara, J., Kamimura, A., Fujie, G. and Hino, R., 2001, Influence of water on earthquake generation along subduction zones. Bull. Earthquake Res. Inst., University of Tokyo 76, 289-301.

    Google Scholar 

  • Kawamoto, T., Herig, R. L. and Holloway, J. R., 1996, Experimental evidence for a hydrous transition zone in the Earth's mantle. Earth Plant. Sci. Lett. 142, 587-592.

    Google Scholar 

  • Kern, H., Liu, B. and Popp, T., 1997, Relationship between anisotropy of P and S velocities and anisotropy of attenuation in serpentinite and amphibolite, J. Geophys. Res. 102, 3051-3065.

    Google Scholar 

  • Larsen, B. T., Krigsvoll, R. and Heum, O. R., 1989, Structural style and tectonic development of the Haltenbanken area, Mid-Norway. Abstract: Norwegian Petrol. Soc. conf. on structural and tectonic modelling and its application to petroleum geology, Stavanger, 18-20 October 1989.

  • Luth, R. W., 1995, Is phase A relevant to the Earth's mantle? Geochim. Cosmochim. Acta 59, 679-682.

    Google Scholar 

  • Maekawa, H., Shozui, M., Ishii, K., Saboda, K. and Ogawa, Y., 1992, Metamorphic rocks from the serpentinite seamounts in the Mariana and Izu-Ogasawara forearcs, Proc. Ocean Drilling Program, Sci. Results 125, College Station, 415-430.

    Google Scholar 

  • Maekawa, H., Yamamoto, K., Teruaki, I., Ueno, T. and Osada, Y., 2001, Serpentinite seamounts and hydrated mantle wedge in the Izu-Bonin and Maraiana Forearc regions, Bull. Earthquake Res. Inst., Univ. Tokyo 76, 355-366.

    Google Scholar 

  • Minshull, T. A., White, R. S., Mutter, J. C., Buhl, P., Detrick, R. S., Williams, C. A. and Morris, E., 1991, Crustal structure at the Blake Spur Fracture Zone from expanding spread profiles, J. Geophys. Res. 96, 9955-9984.

    Google Scholar 

  • Minshull, T. A., Muller, M. R., Robinson, C. J., White, R. S. and Bickle, M. J., 1998, Is the oceanic Moho a serpentinitization front? in: Mills, R. A., Harrison, K. (eds.), Modern ocean floor processes and the geological record. Geol. Soc. London, Spec. Publ. 148, 71-80.

    Google Scholar 

  • Mjelde, R., Sellevoll, M. A., Shimamura, H., Iwasaki, T. and Kanazawa, T., 1993, Crustal structure under Lofoten, N. Norway, from vertical incidence and wide-angle data, Geophys. J. Int. 114, 116-126.

    Google Scholar 

  • Mjelde, R., Sellevoll, M. A., Shimamura, H., Iwasaki, T. and Kanazawa, T., 1995, S-wave anisotropy off Lofoten, Norway, indicative of fluids in the lower crust? Geophys. J. Int. 120, 87-96.

    Google Scholar 

  • Mjelde, R., Kodaira, S., Shimamura, H., Kanazawa, T., Shiobara, H., Berg, E.W. and Riise, O., 1997a, Crustal structure of the central part of the Vøring Basin, mid-Norway margin, from ocean bottom seismographs, Tectonophysics 277, 235-257.

    Google Scholar 

  • Mjelde, R., Kodaira, S., Digranes, P. Shimamura, H., Kanazawa, T., Shiobara, H. and Berg, E. W., 1997b, Comparison between a regional and semi-regional crustal OBS-model in the Vøring basin, Mid-Norway Margin, Pure and Appl. Geophys. 149, 641-665.

    Google Scholar 

  • Mjelde, R., Digranes, P., Shimamura, H., Shiobara, H. Kodaira, S., Brekke, H., Egebjerg, T., Sørenes, N. and Thorbjørnsen, T., 1998, Crustal structure of the northern part of the Vøring Basin, mid-Norway margin, from wide-angle seismic and gravity data, Tectonophysics 293, 175-205.

    Google Scholar 

  • Mjelde, R., Digranes, P., Van Schaack, M., Shimamura, H., Shiobara, H. Kodaira, S., Næss, O., Sørenes, N. and Vågnes, E., 2001, Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data, J. Geoph. Res. 106, 6769-6791.

    Google Scholar 

  • Morris, E., Detrick, R., Minshull, T. A., Mutter, J. C., White, R. S., Su, W. and Buhl, P., 1993, Seismic structure of oceanic crust in the western north Atlantic, J. Geophys. Res. 98, 13879-13903.

    Google Scholar 

  • Mutter, J. C., Talwani, M. and Stoffa, P. L., 1984, Evidence for a thick oceanic crust adjacent to the Norwegian margin. J. Geophys. Res. 89, 483-502.

    Google Scholar 

  • NAT Study Group, 1985. North Atlantic Transect: A wide-aperture, two-ship multichannel seismic investigation of the oceanic crust. J. Geophys. Res. 90, 10321-10341.

    Google Scholar 

  • Nicols, A. R. L., Carroll, M. R., Hoskuldsson, A., Taylor, R. N. and Blank, J. G., 1999. Water content of the Iceland mantle, EOS 80, F651.

    Google Scholar 

  • O'Hanley, D. S., 1996, Serpentinites: Records of tectonic and petrological history, Oxford University Press, New York.

    Google Scholar 

  • Ohtani, E., Toma, M., Litasov, K., Kubo, T., Suzuki, A., 2001, Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle, Phys. Earth Planet. Int. 124, 105-117.

    Google Scholar 

  • Peacock, S. M., 1990, Fluid processes in subduction zones. Science 248, 329-337.

    Google Scholar 

  • Pickup, S. L. B., Whitmarsh, R. B., Fowler, C. M. R. and Reston. T. J., 1996, Insight into the nature of the ocean-continent transition off West Iberia from a deep multichannel seismic reflection profile, Geology 24, 1079-1082.

    Google Scholar 

  • Planke, S., Skogseid, J. and Eldholm, O., 1991, Crustal structure off Norway, 60-70. N, Tectonophysics 189, 91-107.

    Google Scholar 

  • Raum, T., Mjelde, R., Digranes, P., Shimamura, H., Shiobara, H., Kodaira, S., Haatvedt, G., Sørenes, N. and Thorbjørnsen, T., 2002, Crustal structure of the southern part of the Vøring basin, mid-Norway margin, from wide-angle seismic and gravity data, Tectonophysics (In press).

  • Ren, S., Skogseid, J. and Eldholm, O., 1998, Late Cretaceous-Paleocene extension on the Vøring Volcanic Margin, Mar. Geophys. Res. 20, 343-369.

    Google Scholar 

  • Roberts, A. M., Erik, R. L. and Kusznir, N. J., 1997, Subsidence of the Vøring Basin and the influence of the Atlantic continental margin, J. Geol. Soc. London 154, 551-557.

    Google Scholar 

  • Ruppel, C., 1995, Extensional processes in continental lithosphere, J. Geophys. Res. 100, 24187-24215.

    Google Scholar 

  • Sato, H. and Ito. K., 2001, H2 O fluid distribution in mantle rock at 1 GPa: constraints from V s-V p /V s diagram, Bull. Earthquake Res. Inst., Univ. Tokyo 76, 305-310.

    Google Scholar 

  • Shimamura, H., 1988, OBS technical description. Annexe to cruise report, Sellevoll, M. A. 1988. Inst. of Solid Earth Physics, Univ. of Bergen, 3 pp.

  • Skogseid, J. and Eldholm, O., 1989, Vøring Plateau Continental Margin: Seismic interpretation, stratigraphy and vertical movements. in: Eldholm, O., Thiede, J., Taylor, J. (eds.), Proc. ODP, Sci. Results. 104, College Station, TX (Ocean Drilling Program), pp. 993-1030.

  • Skogseid, J., Pedersen, T., Eldholm, O. and Larsen, B. T., 1992, Tectonism andMagmatism during NE Atlantic continental break-up: the Vøring margin. in: Story, B. C., Alabaster, T., Plankhurst, R. J. (eds.), Magmatism and the causes of continental break-up, Geol. Soc. Spec. Publ. 68, 305-320.

  • Skogseid, J., Planke, S., Faleide, J. I., Pedersen, T., Eldholm, O. and Neverdal, F., 2000. NE Atlantic continental rifting and volcanic margin formation. in: Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society Special Publication, 167, The Geological Society, London, pp. 295-326.

    Google Scholar 

  • Spencer, A. M. et al. (eds.), 1984, Petroleum Geology of the North European Margin. Graham and Trotman, London, 436 pp.

    Google Scholar 

  • Spencer, A. M. et al. (eds.), 1986, Habitat of Hydrocarbons on the Norwegian continental shelf, Graham and Trotman, London

    Google Scholar 

  • Sundvor, E., Eldholm, O., Gladczenko, T. P., and Planke, S., 2000, Norwegian-Greenland Sea thermal field. in: Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society Special Publication, 167, The Geological Society, London, pp. 397-410.

    Google Scholar 

  • Surlyk, F., Piasecki, S., Rolle, F., Stemmerik, L., Thomsen, E., Wrang, P., 1984, The Permian basin of East Greenland. in: Petroleum Geology of the North European Margin. Spencer, A. M. et al. (eds.), Graham and Trotman, London, pp. 303-315.

    Google Scholar 

  • Takahashi, N., Suyehiro, K., Shinohara, M., 1998, Implications from the seismic crustal structure of the northern Izu-Bonin Arc, The Island Arc 7, 383-394.

    Google Scholar 

  • Talwani, M., Udintsev, G. et al. (eds.), 1976, Tectonic synthesis. in: Initial reports Deep Sea Drilling Project. 38. Washington, D.G., U.S. Government Printing Office, pp. 1213-1242.

    Google Scholar 

  • Ulmer, P. and Trommsdorff, V., 1995, Serpentine stability to mantle depths and subduction-related magmatism, Science 268, 858-861.

    Google Scholar 

  • Von Bargen, H. and Waff, H. S., 1986, Permeabilities, interfacial areas and curvatures of partially-molten systems: Results of numerical computations of equilibrium microstructures, J. Geophys. Res. 91, 9261-9276.

    Google Scholar 

  • Walker, I. M., Berry, K. A., Bruce, J. R., Bystøl, L. and Snow, J. H., 1997, Structural modeling of regional depth profiles in the Vøring Basin, implications for the structural and stratigraphic development of the Norwegian passive margin, J. Geol. Soc. London 154, 537-544.

    Google Scholar 

  • Wallace, P. J., 1998, Water and partial melting in mantle plumes: inferences from the dissolved H2 O concentration of Hawaiian basaltic magmas, Geophys. Res. Lett. 25, 3639-3642.

    Google Scholar 

  • Weir, N. R.W.,White, R. S., Brandsdottir, B., Einarsson, H., Shimamura, H., Shiobara, H., and Team, R. F., 2002, Crustal structure of the northern Reykjanes Ridge and the Reykjanes Peninsula, south-west Iceland. J. Geophys. Res. (in press).

  • White, R. S. and McKenzie, D., 1989, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res. 94, 7685-7729.

    Google Scholar 

  • Whitmarsh, R. B., Pinheiro, L. M., Miles, P. R., Recq, M. and Sibuet, J. C., 1993, Thin crust at the western Iberia oceancontinent transition and ophiolites. Tectonics 12, 1230-1239.

    Google Scholar 

  • Whitmarsh, R. B., White, R. S., Horsefield, S. J., Sibuet, J. C., Recq, M. and Louvel, V., 1996a, The ocean-continent boundary off the western continental margin of Iberia: Crustal structure west of Galicia Bank. J. Geophys. Res. 101, 28291-28314.

    Google Scholar 

  • Whitmarsh, R. B., Miles, P. R., Sibuet, J.-C. and Louvel, V., 1996b, Proceedings of the Ocean Drilling Program, Scientific Results 173, 665-674, Ocean Drill. Progr., College Station, Tex.

    Google Scholar 

  • Zelt, C. A. and Smith, R. B., 1992, Seismic traveltime inversions for 2-D crustal velocity structure, Geophys. J. Int. 108, 16-34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mjelde, R., Kasahara, J., Shimamura, H. et al. Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinized peridotite? Evidence from the Vøring Margin, NE Atlantic. Marine Geophysical Researches 23, 169–183 (2002). https://doi.org/10.1023/A:1022480304527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022480304527

Keywords

Navigation