Skip to main content
Log in

Combining NMR spectral and structural data to form models of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls binding to the AhR

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A three-dimensional quantitative spectrometric data-activity relationship (3D-QSDAR) modeling technique which uses NMR spectral and structural information that is combined in a 3D-connectivity matrix has been developed. A 3D-connectivity matrix was built by displaying all possible assigned carbon NMR chemical shifts, carbon-to-carbon connections, and distances between the carbons. Two-dimensional 13C-13C COSY and 2D slices from the distance dimension of the 3D-connectivity matrix were used to produce a relationship among the 2D spectral patterns for polychlorinated dibenzofurans, dibenzodioxins, and biphenyls (PCDFs, PCDDs, and PCBs respectively) binding to the aryl hydrocarbon receptor (AhR). We refer to this technique as comparative structural connectivity spectral analysis (CoSCoSA) modeling. All CoSCoSA models were developed using forward multiple linear regression analysis of the predicted 13C NMR structure-connectivity spectral bins. A CoSCoSA model for 26 PCDFs had an explained variance (r2) of 0.93 and an average leave-four-out cross-validated variance (q4 2) of 0.89. A CoSCoSA model for 14 PCDDs produced an r2 of 0.90 and an average leave-two-out cross-validated variance (q2 2) of 0.79. One CoSCoSA model for 12 PCBs gave an r2 of 0.91 and an average q2 2 of 0.80. Another CoSCoSA model for all 52 compounds had an r2 of 0.85 and an average q4 2 of 0.52. Major benefits of CoSCoSA modeling include ease of development since the technique does not use molecular docking routines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, V. and Spiro, C., Toxicol. Environ. Chem., 50 (1995) 1.

    Google Scholar 

  2. Brzuzy, L.P. and Hites, R.A., Environ. Sci. Technol., 30 (1996) 1797.

    Google Scholar 

  3. EPA: Polychlorinated Biphenyls; Criteria Modification; Hearings. Federal Register, 44 (1979) 31514.

    Google Scholar 

  4. Safe, S., Crit. Rev. Toxicol., 21 (1990) 50.

    Google Scholar 

  5. Mekemyan, O.G., Veith, G.D., Call, D.J. and Ankley, G.T., Environ. Health Perspect., 104 (1996) 1302.

    Google Scholar 

  6. Bhandiera, S., Sawyer, T., Romkes, M., Zmudzka, B., Safe, L., Mason, G., Keys, B. and Safe, S., Toxicology, 32 (1984) 131.

    Google Scholar 

  7. Mason. G., Farrell, K., Keys, B., Piskorska-Pliszczynska, J., Safe, L. and Safe, S., Toxicology, 41 (1986) 21.

    Google Scholar 

  8. Mason. G., Sawyer, T., Keys, B., Bandiera, S., Romkes, M., Piskorska-Pliszczynska, J., Zmudzka, B. and Safe, S., Toxicology, 37 (1985) 1.

    Google Scholar 

  9. Bandiera, S., Safe, S. and Okey, A. B., Chem.-Biol. Interact., 39 (1982) 259.

    Google Scholar 

  10. Beger, R.D. and Wilkes, J.G., J. Comput.-Aid. Mol. Des., 15 (2001) 659.

    Google Scholar 

  11. Beger, R.D. and Wilkes, J.G., J. Chem. Inf. Comput. Sci., 41 (2001) 1360.

    Google Scholar 

  12. Beger, R.D. and Wilkes, J.G., J. Chem. Inf. Comput. Sci., 41 (2001) 1322.

    Google Scholar 

  13. Andersson, P.L., van der Burght, A.S.A.M., van der Berg, M. and Tysklind, M., Environ. Toxicol. Chem., 19 (2000) 1454.

    Google Scholar 

  14. Bursi, R., Dao, T., van Wilk, T., de Gooyer, M., Kellenbach, E. and Verwer, P., J. Chem. Inf. Comput. Sci., 39 (1999) 861.

    Google Scholar 

  15. Turner, D.B., Willett, P., Ferguson, A.M. and Heritage, T., J. Comput. Aid. Mol. Des., 11 (1997) 409.

    Google Scholar 

  16. Beger, R.D., Buzatu, D.A., Lay, J.O. and Wilkes, J.G., J. Chem. Inf. Comp. Sci. 42 (2002) 1123.

    Google Scholar 

  17. Beger, R.D. and Wilkes, J.G., J. Molec. Recognit., 15 (2002) 154.

    Google Scholar 

  18. Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.

    Google Scholar 

  19. Aue, W.P., Bartholdi, E. and Ernst, R.R., J. Chem. Phys., 24 (1976) 2229.

    Google Scholar 

  20. Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R., J. Chem. Phys., 71 (1979) 4546.

    Google Scholar 

  21. Beger, R.D. and Bolton, P.H., Biol. Chem., 273 (1998) 15565.

    Google Scholar 

  22. Beger, R.D. and Bolton, P.H., J. Biomol. NMR, 10 (1997) 129.

    Google Scholar 

  23. Wishart, D.S. and Sykes, B.D., Meth. Enzymol., 239 (1994) 363.

    Google Scholar 

  24. ACD/Labs CNMR software version 5.0, Toronto, Canada.

  25. Poland, A. and Knutson, J.C., Annu. Rev. Pharmacol. Toxicol., 22 (1982) 517.

    Google Scholar 

  26. Poland, A., Glover, E. and Kende, A.S., J. Biol. Chem., 251 (1976) 493.

    Google Scholar 

  27. Safe, S. Crit. Rev. Toxicol., 13 (1984) 319.

    Google Scholar 

  28. Safe, S.H. Annu. Rev. Pharmacol. Toxicol., 26, (1986) 371.

    Google Scholar 

  29. Bremser, W. HOSE – a Novel substructure Code. Anal. Chim. Acta., 103 (1978) 355.

    Google Scholar 

  30. Statisica, StatSoft software, Tulsa, OK.

  31. Cramer, R.D., Bunce, J.D. and Patterson, D.E., Quant. Struct.-Act. Relat., 7 (1988) 18.

    Google Scholar 

  32. Mekemyan, O.G., Veith, G.D., Call, D.J. and Ankley, G.T. Environ. Health Perspect., 104 (1996) 1302.

    Google Scholar 

  33. Rannug, U., Sjogren, M., Rannug, A., Gillner, M., Toftgard, R., Gustafsson, J.-A., Rosenkranz, H. and Klopman, G., Carcinogenesis, 12 (1991) 2007.

    Google Scholar 

  34. Kafafi, A.A., Afeefy, H.Y., Said, H.K. and Hakimi, J.M., Chem. Res. Toxicol., 5 (1992) 856.

    Google Scholar 

  35. Cho, S.J. and Tropsha A., J. Med. Chem., 38 (1995) 1060.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beger, R.D., Buzatu, D.A. & Wilkes, J.G. Combining NMR spectral and structural data to form models of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls binding to the AhR. J Comput Aided Mol Des 16, 727–740 (2002). https://doi.org/10.1023/A:1022479510524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022479510524

Navigation