Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications

Abstract

Dielectric-barrier discharges (silent discharges) are used on a large industrial scale. They combine the advantages of non-equilibrium plasma properties with the ease of atmospheric-pressure operation. A prominent feature is the simple scalability from small laboratory reactors to large industrial installations with megawatt input powers. Efficient and cost-effective all-solid-state power supplies are available. The preferred frequency range lies between 1 kHz and 10 MHz, the preferred pressure range between 10 kPa and 500 kPa. Industrial applications include ozone generation, pollution control, surface treatment, high power CO2 lasers, ultraviolet excimer lamps, excimer based mercury-free fluorescent lamps, and flat large-area plasma displays. Depending on the application and the operating conditions the discharge can have pronounced filamentary structure or fairly diffuse appearance. History, discharge physics, and plasma chemistry of dielectric-barrier discharges and their applications are discussed in detail.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    W. Siemens, Poggendorff's Ann. Phys. Chem. 102, 66(1857).

    Google Scholar 

  2. 2.

    T. Andrews and P. G. Tait, Phil. Trans. Roy. Soc. (London) 150, 113(1860).

    Google Scholar 

  3. 3.

    P. Hautefeuille and J. Chappuis, Compt. Rend. Acad. Scé. (Paris) 92, 80(1881).

    Google Scholar 

  4. 4.

    E. Warburg and G. Leithäuser, Ann. Physik (4) 28, 313(1909).

    Google Scholar 

  5. 5.

    E. Warburg, Ann. Physik (4) 13, 464(1904).

    Google Scholar 

  6. 6.

    E. Warburg, Z. Tech. Phys. 6, 625(1925).

    Google Scholar 

  7. 7.

    H. Becker, Wiss. Veröff. Siemens-Konzern 1, 76(1920).

    Google Scholar 

  8. 8.

    H. Becker, Wiss. Veröff. Siemens-Konzern 3, 243(1923).

    Google Scholar 

  9. 9.

    M.-P. Otto, Bull. Soc. Franç. Electr. 9, 129(1929).

    Google Scholar 

  10. 10.

    K. Buss, Arch. Elektrotech. 26, 261(1932).

    Google Scholar 

  11. 11.

    A. Klemenc, H. Hinterberger, and H. Höfer, Z. Elektrochem. 43, 708(1937).

    Google Scholar 

  12. 12.

    M. Suzuki, Proc. Jpn. Acad. 26, 20(1950).

    Google Scholar 

  13. 13.

    M. Suzuki and Y. Naito, Proc. Jpn. Acad. 28, 469(1952).

    Google Scholar 

  14. 14.

    K. Honda and Y. Naito, J. Phys. Soc. Jpn. 10, 1007(1955).

    Google Scholar 

  15. 15.

    H. Gobrecht, O. Meinhardt, and F. Hein, Ber. Bunsenges. f. phys. Chem. 68, 55(1964).

    Google Scholar 

  16. 16.

    M. A. Bagirov, M. A. Kurbanov, A. V. Shkilev, and N. E. Nuraliev, Sov. Phys.-Tech. Phys. 16, 1011(1971).

    Google Scholar 

  17. 17.

    T. C. Manley, Trans. Electrochem. Soc. 84, 83(1943).

    Google Scholar 

  18. 18.

    E. Briner and B. Susz, Helv. Chim. Acta. 13, 678(1930).

    Google Scholar 

  19. 19.

    Yu. V. Filippov, V. A. Boblikova, and V. I. Panteleev, Electrosynthesis of Ozone, Moscow State University (1987) (in Russian).

  20. 20.

    J. C. Devins, J. Electrochem. Soc. 103, 460(1956).

    Google Scholar 

  21. 21.

    R. W. Lunt, Adv. Chem. Ser. 21, 286(1959).

    Google Scholar 

  22. 22.

    S. Fuji and N. Takemura, Adv. Chem. Series 21, 334(1959).

    Google Scholar 

  23. 23.

    V. G. Samoilovich, V. Gibalov, and K. V. Kozlov, Physical Chemistry of the Barrier Discharge (J. P. F. Conrads and F. Leipold, eds.), DVS-Verlag, Düsseldorf (1997) (Original Russian version: Moscow State University, 1989).

    Google Scholar 

  24. 24.

    U. Kogelschatz, in Proc. 16th Int. Conf. on Phenomena in Ionized Gases (XVI ICPIG), Düsseldorf (1983), Invited Papers, pp. 240–250.

  25. 25.

    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309(1991).

    Google Scholar 

  26. 26.

    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063(1991).

    Google Scholar 

  27. 27.

    U. Kogelschatz, in Proc. 10th Int. Conf. on Gas Discharges and their Applications (GD-92), Swansea, UK (1992), Vol. II, pp. 972–982.

  28. 28.

    B. Eliasson, W. Egli, and U. Kogelschatz, Pure Appl. Chem. 66, 1275(1994).

    Google Scholar 

  29. 29.

    U. Kogelschatz, B. Eliasson, and W. Egli, J. Phys. IV (France) 7, C4–47 (1997).

    Google Scholar 

  30. 30.

    U. Kogelschatz, B. Eliasson, and W. Egli, Pure Appl. Chem. 71, 1819(1999).

    Google Scholar 

  31. 31.

    U. Kogelschatz, Ozone generation and dust collection, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications (E. M. van Veldhuizen, ed.), Nova Science Publishers, Commack, New York (2000), Chapter 12, pp. 315–344.

    Google Scholar 

  32. 32.

    U. Kogelschatz and J. Salge, High pressure plasmas. Dielectric-barrier and corona discharges: Properties and technical applications, in Low Temperature Plasma Physics: Fundamental Aspects and Applications (R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds.), Wiley-VCH, Weinheim (2001), Chapter 13, pp. 331–357.

    Google Scholar 

  33. 33.

    K. G. Donohoe and T. Wydeven, J. Appl. Polymer Sci. 23, 2591(1979).

    Google Scholar 

  34. 34.

    S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 21, 838(1988).

    Google Scholar 

  35. 35.

    F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, J. Appl. Phys. 83, 2950(1998).

    Google Scholar 

  36. 36.

    D. G. Boyers and W. A. Tiller, Appl. Phys. Lett. 41, 28(1982).

    Google Scholar 

  37. 37.

    E. Ammelt, D. Schweng, and H.-G. Purwins, Phys. Lett. A 179, 348(1993).

    Google Scholar 

  38. 38.

    W. Breazeal, K. M. Flynn, and E. G. Gwinn, Phys. Rev. E 52, 1503(1995).

    Google Scholar 

  39. 39.

    U. Kogelschatz, Filamentary, patterned and diffuse barrier discharges, IEEE Trans. Plasma Sci. 30 (2002), accepted for publication.

  40. 40.

    K. Yoshida and H. Tagashira, Memoirs Kitami Inst. Technol. 18, 11(1986).

    Google Scholar 

  41. 41.

    B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421(1987).

    Google Scholar 

  42. 42.

    D. Braun, U. Küchler, and G. Pietsch, J. Phys. D: Appl. Phys. 24, 564(1991).

    Google Scholar 

  43. 43.

    D. Braun, V. Gibalov, and G. Pietsch, Plasma Sources Sci. Technol. 1, 166(1992).

    Google Scholar 

  44. 44.

    V. I. Gibalov and G. Pietsch, Russ. J. Phys. Chem. 68, 839(1994).

    Google Scholar 

  45. 45.

    W. Egli, J. M. Favre, and B. Eliasson, Crosscuts 7 (3), 14(1998).

    Google Scholar 

  46. 46.

    G. Steinle, D. Neundorf, W. Hiller, and M. Pietralla, J. Phys. D: Appl. Phys. 32, 1350(1999).

    Google Scholar 

  47. 47.

    J. Drímal, V. I. Gibalov, and V. G. Samoilovich, Czech. J. Phys. B37, 1248(1987).

    Google Scholar 

  48. 48.

    J. Drímal, K. V. Kozlov, V. I. Gibalov, and V. G. Samoilovich, Czech. J. Phys. B 38, 159(1988).

    Google Scholar 

  49. 49.

    V. I. Gibalov, J. Drímal, M. Wronski, and V. G. Samoilovich, Contrib. Plasma Phys. 31, 89(1991).

    Google Scholar 

  50. 50.

    E. Gerova and S. Müller, in Proc. 23rd Int. Conf. on Phenomena in Ionized Gases (XXIII ICPIG), Toulouse, France (1997), Vol. 4, pp. 120–121.

  51. 51.

    R. Wendt and H. Lange, J. Phys. D: Appl. Phys. 31, 3368(1998).

    Google Scholar 

  52. 52.

    C. Hilbert, I. Gaurand, O. Motret, and J. M. Pouvesle, J. Appl. Phys. 85, 7070(1999).

    Google Scholar 

  53. 53.

    C. Lukas, M. Spaan, V. Schulz-von der Gathen, M. Thomson, R. Wegst, H. F. Döbele, and M. Neiger, Plasma Sources Sci. Technol. 10, 445(2001).

    Google Scholar 

  54. 54.

    K. V. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D: Appl. Phys. 34, 3164(2001).

    Google Scholar 

  55. 55.

    K. Kunze, M. Miclea, G. Musa, J. Franzke, C. Vadla, and K. Niemax, Spectrochimica Acta B57, 137(2002).

    Google Scholar 

  56. 56.

    O. Motret, C. Hibert, S. Pellerin, and J. M. Pouvesle, J. Phys. D: Appl. Phys. 33, 1483(2000).

    Google Scholar 

  57. 57.

    M. Spaan, J. Leistikow, V. Schulz-von der Gathen, and H. F. Döbele, Plasma Sources Sci. Technol. 9, 146(2000).

    Google Scholar 

  58. 58.

    N. K. Bibinov, A. A. Fateev, and K. Wiesemann, Plasma Sources Sci. Technol. 10, 579(2001).

    Google Scholar 

  59. 59.

    A. V. Phelps and S. A. Lawton, J. Chem. Phys. 69, 1055(1978).

    Google Scholar 

  60. 60.

    N. P. Penkin, V. V. Smirnov, and O. D. Tsygir, Sov. Phys.: Techn. Phys. 27, 945(1982).

    Google Scholar 

  61. 61.

    B. Eliasson, U. Kogelschatz, and P. Baessler, J. Phys. B: At. Mol. Phys. 17, L797(1984).

    Google Scholar 

  62. 62.

    B. Eliasson and U. Kogelschatz, J. Phys. B: At. Mol. Phys. 19, 1241(1986).

    Google Scholar 

  63. 63.

    S. Kajita, S. Ushirosa, and Y. Kodo, J. Appl. Phys. 67, 4015(1990).

    Google Scholar 

  64. 64.

    P. C. Cosby, J. Chem. Phys. 98, 9560(1993).

    Google Scholar 

  65. 65.

    A. V. Phelps and L. C. Pitchford, Phys. Rev. A 31, 2932(1985).

    Google Scholar 

  66. 66.

    P. C. Cosby, J. Chem. Phys. 98, 9544(1993).

    Google Scholar 

  67. 67.

    W. L. Nighan, Phys. Rev. A 2, 1989(1970).

    Google Scholar 

  68. 68.

    A. N. Lobanov and A. N. Suchkov, Sov. J. Quant. Electron. 4, 843(1975).

    Google Scholar 

  69. 69.

    H. N. Kücükarpaci and J. Lucas, J. Phys. D: Appl. Phys. 12, 2123(1979).

    Google Scholar 

  70. 70.

    M. Braglia, R. Winkler, and J. Wilhelm, Contrib. Plasma Phys. 31, 463(1991).

    Google Scholar 

  71. 71.

    B. Eliasson, F.-G. Simon, and W. Egli, Hydrogenation of CO2 in a silent discharge, in Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Vol. G 34, Part B (B. M. Penetrante and S. E. Schultheis, eds.), Springer, Berlin (1993), pp. 321–337.

    Google Scholar 

  72. 72.

    A. C. Gentile, Kinetic Processes and Plasma Remediation of Toxic Gases, PhD Thesis, University of Illinois at Urbana-Champaign (1995), ftp://uigelz.ece.uiuc.edu/pub/theses/gentile-thesis.pdf

  73. 73.

    R. Dorai and M. J. Kushner, J. Appl. Phys. 88, 3739(2000).

    Google Scholar 

  74. 74.

    X. Xu, Dynamics of high-and low-pressure plasma remediation, PhD Thesis, University of Illinois at Urbana-Champaign (2000), ftp://uigelz.ece.uiuc.edu/pub/theses/ xxu_thesis.pdf

  75. 75.

    I. Stefanović, N. K. Bibinov, A. A. Deryugin, I. P. Vionogradov, A. P. Napartovich, and K. Wiesemann, Plasma Sources Sci. Technol. 10, 406(2001).

    Google Scholar 

  76. 76.

    X. P. Xu and M. J. Kushner, J. Appl. Phys. 84, 4153(1998).

    Google Scholar 

  77. 77.

    R. C. Campbell, R. Veerasingam, and R. T. McGrath, IEEE Trans. Plasma Sci. 23, 698(1995).

    Google Scholar 

  78. 78.

    J.-P. Boeuf and L. C. Pitchford, IEEE Trans. Plasma Sci. 24, 95(1996).

    Google Scholar 

  79. 79.

    J.-P. Boeuf and H. Doyeaux, Europhys. News 27, 46(1996).

    Google Scholar 

  80. 80.

    Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall, J. Appl. Phys. 86, 2431(1999).

    Google Scholar 

  81. 81.

    H. S. Jeong, B.-J. Shin, and K.-W. Whang, IEEE Trans. Plasma Sci. 27, 171(1999).

    Google Scholar 

  82. 82.

    T. Tamida, S. J. Sanders, and M. Tanaka, Jpn. J. Appl. Phys. 39, 583(2000).

    Google Scholar 

  83. 83.

    B. Eliasson and W. Egli, Helv. Phys. Acta 60, 241(1987).

    Google Scholar 

  84. 84.

    J. J. Coogan and A. D. Sappey, IEEE Trans. Plasma Sci. 24, 91(1996).

    Google Scholar 

  85. 85.

    U. Kogelschatz, Advanced ozone generation, in Process Technologies for Water Treatment (S. Stucki, ed.), Plenum Press, New York, NY (1988), pp. 87–120.

    Google Scholar 

  86. 86.

    Z. Falkenstein and J. J. Coogan, J. Phys. D: Appl. Phys. 30, 817(1997).

    Google Scholar 

  87. 87.

    T. Tamida, A. Iwata, J. Nishimae, and M. Tanaka, in Proc. 12th Int. Conf. on Gas Discharges and Their Appl. (GD 97), Greifswald (1997), Vol. II, pp. 641–644.

  88. 88.

    C. F. Schönbein, Poggendorff's Ann. Phys. Chem. 50, 616(1840).

    Google Scholar 

  89. 89.

    U. Kogelschatz, B. Eliasson, and M. Hirth, Ozone Sci. Eng. 10, 367(1988).

    Google Scholar 

  90. 90.

    R. Peyrous, P. Pignolet, and B. Held, J. Phys. D: Appl. Phys. 22, 1658(1989).

    Google Scholar 

  91. 91.

    G. Pietsch and V. I. Gibalov, Pure Appl. Chem. 70, 1169(1998).

    Google Scholar 

  92. 92.

    J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys. 30, 2453(1997).

    Google Scholar 

  93. 93.

    S. Yagi and M. Tanaka, J. Phys. D: Appl. Phys. 12, 1509(1979).

    Google Scholar 

  94. 94.

    V. G. Samoilovich and V. I. Gibalov, Russ. J. Phys. Chem. 60, 1107(1986).

    Google Scholar 

  95. 95.

    D. Braun, U. Küchler, and G. Pietsch, Pure Appl. Chem. 60, 741(1988).

    Google Scholar 

  96. 96.

    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207(1992).

    Google Scholar 

  97. 97.

    J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys. 32, 3032(1999).

    Google Scholar 

  98. 98.

    J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453(1999).

    Google Scholar 

  99. 99.

    B. Eliasson and U. Kogelschatz, J. Chim. Phys. 83, 279(1986).

    Google Scholar 

  100. 100.

    R. Peyrous, Ozone Sci. Eng. 12, 19(1990).

    Google Scholar 

  101. 101.

    B. Eliasson and U. Kogelschatz, in Proc. 8th Int. Symp. on Plasma Chemistry (ISP-8), Tokyo (1987), pp. 736–741.

  102. 102.

    U. Kogelschatz and P. Baessler, Ozone Sci. Eng. 9, 195(1987).

    Google Scholar 

  103. 103.

    V. I. Gibalov, V. G. Samoilovich, and M. Wronski, in Proc. 7th Int. Symp. on Plasma Chemistry (ISP-7), Eindhoven (1985), pp. 401–406.

  104. 104.

    P. J. Crutzen, Quart. J. R. Met. Soc. 96, 320(1970).

    Google Scholar 

  105. 105.

    H. S. Johnston, Ann. Rev. Phys. Chem. 43, 1(1992).

    Google Scholar 

  106. 106.

    J. F. Schultz and O. R. Wulf, J. Am. Chem. Soc. 62, 2980(1940).

    Google Scholar 

  107. 107.

    U. Kogelschatz and B. Eliasson, Ozone Generation and Applications, in Handbook of Electrostatic Processes (J. S. Chang, A. J. Kelly, and J. M. Crowley, eds.), Marcel Dekker, New York (1995), Chapter 26, pp. 581–605.

    Google Scholar 

  108. 108.

    U. Kogelschatz, in Proc. Int. Ozone Symp., Basle (1999), pp. 253–265.

  109. 109.

    A. Starke, Z. Elektrochem. 29, 358(1923).

    Google Scholar 

  110. 110.

    M. Kuzumoto, Y. Tabata, and S. Yagi, Trans. IEE of Japan 116A, 121(1996) (in Japanese).

    Google Scholar 

  111. 111.

    S. Masuda, K. Akutsu, M. Kuroda, Y. Awatsu, and Y. Shibuya, IEEE Trans. Ind. Appl. 24, 223(1988).

    Google Scholar 

  112. 112.

    J. A. Wojtowicz, Ozone, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc. (1996), Fourth Edition, Vol. 17, pp. 953–994.

  113. 113.

    J. Hoigné, Cemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation process, in Handbook of Environmental Chemistry, (J. Hrubec, ed.), Vol. 5, Part C, Springer, Berlin (1998), pp. 83–141.

    Google Scholar 

  114. 114.

    W. E. Cromwell and T. C. Manley, Adv. Chem. Ser. 21, 304(1959).

    Google Scholar 

  115. 115.

    E. Inoue and K. Sugino, Adv. Chem. Ser. 21, 313(1959).

    Google Scholar 

  116. 116.

    B. M. Penetrante and S. E. Schultheis (eds.), Non-Thermal Plasma Techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies, Part B: Electron Beam and Electrical Discharge Processing, NATO ASI Series, Series G: Ecological Sciences, Vol. 34, Springer, Berlin (1993).

    Google Scholar 

  117. 117.

    L. A. Rosocha, G. A. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, and J. P. Wantuck, Treatment of hazardous organic wastes using silent discharge plasmas, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 281–308.

    Google Scholar 

  118. 118.

    U. Kogelschatz, in Proc. 8th Int. Conf. on Switching Arc Phenomena/Int. Symp. on Electrical Technologies for Environmental Protection (SAP&ETEP'97), Lodz (1997), pp. 299–303.

  119. 119.

    L. A. Rosocha, Processing of hazardous chemicals using silent-discharge plasmas, in Plasma Science and the Environment (W. Manheimer, L. E. Sugiyama, and T. H. Stix, eds.), AIP Press, Woodbury, NY (1997), Chap. 11, pp. 261–298.

    Google Scholar 

  120. 120.

    B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys. 36, 7B, 5007 (1997).

    Google Scholar 

  121. 121.

    L. A. Rosocha, J. Adv. Oxid. Technol. 4, 247(1999).

    Google Scholar 

  122. 122.

    B. M. Penetrante, R. M. Brusasco, B. T. Merrit, and G. E. Vogtlin, Pure Appl. Chem. 71, 1829(1999).

    Google Scholar 

  123. 123.

    E. M. van Veldhuizen (ed.), Electrical Discharges for Environmental Purposes: Fundamentals and Applications, Nova Science Publ., Huntington NY (2000).

    Google Scholar 

  124. 124.

    V. A. Bityurin, M. A. Deminsky, and B. V. Potapkin, Chemical activity of discharges, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications, E.M. van Veldhuizen, ed., Nova Science Publ., Huntington, NY (2000), Chapter 4, pp. 49–117.

    Google Scholar 

  125. 125.

    L. A. Rosocha and R. A. Korzekwa, Removal of volatile organic compounds (VOCs) by atmospheric-pressure dielectric-barrier and pulsed-corona electrical discharges, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications (E. M. van Veldhuizen, ed.), Nova Science Publ., Huntington, NY (2000), Chapter 10, pp. 245–278.

    Google Scholar 

  126. 126.

    M. Berthelot, Compt. Rend. Acad. Scé. (Paris) 82, 1360(1876).

    Google Scholar 

  127. 127.

    R. Schwarz and W. Kunzer, Z. Anorg. Allgem. Chem. 183, 287(1929).

    Google Scholar 

  128. 128.

    I. Traus and H. Suhr, Plasma Chem. Plasma Process. 12, 275(1992).

    Google Scholar 

  129. 129.

    E. J. Clothiaux, J. A. Koropchak, and R. R. Moore, Plasma Chem. Plasma Process. 4, 15(1984).

    Google Scholar 

  130. 130.

    M. E. Fraser and R. Sheinson, Plasma Chem. Plasma Process. 6, 27(1986).

    Google Scholar 

  131. 131.

    I. Sardja and S. K. Dhali, Appl. Phys. Lett. 56, 21(1989).

    Google Scholar 

  132. 132.

    S. K. Dhali and I. Sardja, J. Appl. Phys. 69, 6319(1991).

    Google Scholar 

  133. 133.

    M. B. Chang, M. J. Kushner, and M. J. Rood, Plasma Chem. Plasma Process. 12, 565(1992).

    Google Scholar 

  134. 134.

    W. Sun, B. Pashai, S. K. Dhali, and F. I. Honea, J. Appl. Phys. 79, 3438(1996).

    Google Scholar 

  135. 135.

    R. H. Zhang, T. Yamamoto, and D. S. Bundy, IEEE Trans. Ind. Appl. 32, 113(1996).

    Google Scholar 

  136. 136.

    M. B. Chang and T. D. Tseng, J. Environ. Eng. 122, 41(1996).

    Google Scholar 

  137. 137.

    R. Ruan, W. Han, A. Ning, P. L. Chen, P. R. Goodrich, and R. Zhang, J. Adv. Oxid. Technol. 4, 328(1999).

    Google Scholar 

  138. 138.

    H. Ma, P. Chen, and R. Ruan, Plasma Chem. Plasma Process. 21, 611(2001).

    Google Scholar 

  139. 139.

    J. Comes, Angew. Chem. 106, 1900(1994).

    Google Scholar 

  140. 140.

    A. Ogata, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process. 18, 363(1998).

    Google Scholar 

  141. 141.

    S. Futamura, A. Zhang, G. Prieto, and T. Yamamoto, IEEE Trans. Ind. Appl. 34, 967(1998).

    Google Scholar 

  142. 142.

    M. C. Hsiao, B. T. Merrit, B. M. Penetrante, G. E. Vogtlin, P. H. Wallman, R. G. Tonkyn, R. R. Shah, and T. M. Orlando, J. Adv. Oxid. Technol. 1, 79(1996).

    Google Scholar 

  143. 143.

    A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process. 19, 383(1999).

    Google Scholar 

  144. 144.

    A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, and T. Yamamoto, IEEE Trans. Ind. Appl. 35, 753(1999).

    Google Scholar 

  145. 145.

    W. C. Neely, E. I. Newhouse, E. J. Clothiaux, and C. A. Gross, Decomposition of complex molecules using silent discharge processing, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 309–320.

    Google Scholar 

  146. 146.

    A. Sjöberg, T. H. Teich, E. Heinzle, and K. Hungerbühler, J. Adv. Oxid. Technol. 4, 319(1999).

    Google Scholar 

  147. 147.

    T. Yamamoto, J.-S. Chang, A. A. Berezin, H. Kohno, S. Honda, and A. Shibuya, J. Adv. Oxid. Technol. 1, 67(1996).

    Google Scholar 

  148. 148.

    G. K. Anderson, H. Snyder, and J. Coogan, Plasma Chem. Plasma. Process. 19, 131(1999).

    Google Scholar 

  149. 149.

    S. P. Bugaev, V. A. Kushinov, N. S. Sochugov, and P. A. Khryapov, Plasma Chem. Plasma Process. 16, 669(1996).

    Google Scholar 

  150. 150.

    D. G. Storch and M. J. Kushner, J. Appl. Phys. 73, 51(1993).

    Google Scholar 

  151. 151.

    H. M. Lee and M. B. Chang, Plasma Chem. Plasma Process. 21, 329(2001).

    Google Scholar 

  152. 152.

    M. C. Hsiao, B. T. Merrit, B. M. Penetrante, and G. E. Vogtlin, J. Appl. Phys. 78, 3451(1995).

    Google Scholar 

  153. 153.

    Z. Falkenstein, J. Adv. Oxid. Technol. 2, 223(1997).

    Google Scholar 

  154. 154.

    R. G. Tonkyn, S. E. Barlow, and T. M. Orlando, J. Appl. Phys. 80, 4877(1996).

    Google Scholar 

  155. 155.

    T. Yamamoto, K. Mizuno, I. Tamori, A. Ogata, M. Nifuku, M. Michalska, and G. Prieto, IEEE Trans. Ind. Appl. 32, 100(1996).

    Google Scholar 

  156. 156.

    C. Fitzsimmons, F. Ismail, J. C. Whitehead, and J. J. Wilman, J. Phys. Chem. A104, 6032(2000).

    Google Scholar 

  157. 157.

    D. Evans, L. A. Rosocha, G. K. Anderson, J. J. Cogan, and M. J. Kushner, J. Appl. Phys. 74, 5378(1993).

    Google Scholar 

  158. 158.

    T. Oda, R. Yamashita, T. Takahashi, and S. Masuda, IEEE Trans. Ind. Appl. 32, 227(1966).

    Google Scholar 

  159. 159.

    S. Futamura and T. Yamamoto, IEEE Trans. Ind. Appl. 33, 447(1997).

    Google Scholar 

  160. 160.

    A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2977(1995).

    Google Scholar 

  161. 161.

    H. Snyder and G. K. Anderson, IEEE Trans. Plasma Sci. 26, 1695(1998).

    Google Scholar 

  162. 162.

    S. J. Yu and M. B. Chang, Plasma Chem. Plasma Process. 21, 311(2001).

    Google Scholar 

  163. 163.

    R. N. Foster and J. B. Butt, Enhancing reaction rates, US Patent No. 3,674,666 (1972).

  164. 164.

    J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152(1991).

    Google Scholar 

  165. 165.

    C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Mammel, and P. H. Kariher, Air & Waste 43, 242(1993).

    Google Scholar 

  166. 166.

    T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Control of volatile organic compounds by a pulsed corona reactor and a packed bed reactor, in Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Vol. G 34, Part B (B. M. Penetrante and S. E. Schultheis, eds.), Springer, Berlin (1993), pp. 223–237.

    Google Scholar 

  167. 167.

    M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, Phys. Chem. Chem. Phys. 3, 294(2001).

    Google Scholar 

  168. 168.

    M. Higashi, S. Uchida, N. Suzuki, and K. Fujii, IEEE Trans. Plasma Sci. 20, 1(1992).

    Google Scholar 

  169. 169.

    M. Klein, and R. Seeböck, Phys. Blätter 52, 886(1996) (in German).

    Google Scholar 

  170. 170.

    B. M. Penetrante, R. M. Brusasco, B. T. Merrit, and G. E. Vogtlin, Pure Appl. Chem. 71, 1829(1999).

    Google Scholar 

  171. 171.

    B. M. Penetrante, M. C. Hsiao, B. T. Merrit, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. Hammer, and S. Bröer, Appl. Phys. 68, 3719(1996).

    Google Scholar 

  172. 172.

    W. O. Niessen, O. Wolf, R. Schruft, and M. Neiger, J. Phys. D: Appl. Phys. 31, 542(1998).

    Google Scholar 

  173. 173.

    T. Hammer, in Proc. 7th Int. Symp. on High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greifswald (2000), Vol. 2, 234–241.

  174. 174.

    J. W. Hoard, T. J. Wallington, J. C. Ball, M. D. Hurley, K. Wodzisz, and M. L. Balmer, Environ. Sci. Technol. 33, 3427(1999).

    Google Scholar 

  175. 175.

    T. Hammer, S. Bröer, and T. Kishimoto, J. Adv. Oxid. Technol. 4, 368(1999).

    Google Scholar 

  176. 176.

    A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2074(1995).

    Google Scholar 

  177. 177.

    J. J. Lowke and R. Morrow, IEEE Trans. Plasma Sci. 23, 661(1995).

    Google Scholar 

  178. 178.

    O. Eichwald, M. Yousfi, A. Hennad, and M. D. Bennabdessadok, J. Appl. Phys. 82, 4781(1997).

    Google Scholar 

  179. 179.

    Y. S. Mok, S. W. Ham, and I.-S. Nam, IEEE Trans. Plasma Sci. 26, 1566(1998).

    Google Scholar 

  180. 180.

    R. Dorai and M. J. Kushner, J. Phys. D: Appl. Phys. 34, 574(2001).

    Google Scholar 

  181. 181.

    L. W. Sieck, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 20, 235(2000).

    Google Scholar 

  182. 182.

    J. T. Herron and D. S. Green, Plasma Chem. Plasma Process. 21, 459(2001).

    Google Scholar 

  183. 183.

    J. T. Herron, Plasma Chem. Plasma Process. 21, 581(2001).

    Google Scholar 

  184. 184.

    R. Dorai and M. J. Kushner, J. Appl. Phys. 88, 3739(2000).

    Google Scholar 

  185. 185.

    I. Orlandini and U. Riedel, J. Phys. D: Appl. Phys. 33, 2467(2000).

    Google Scholar 

  186. 186.

    R. Dorai, K. Hassouni, and M. J. Kushner, J. Appl. Phys. 88, 6060(2000).

    Google Scholar 

  187. 187.

    M. Klein, Barrierenentladungen zur Entstickung motorischer Abgase, PhD Thesis, Universität Karlsruhe (1995) (in German).

  188. 188.

    S. Bröer, Plasmainduzierte Entstickung dieselmotorischer Abgase-Der Einfluss gasförmiger Additive sowie die Kombination mit katalytischen und reaktiven Materialien, PhD Thesis, Technische Universität München (1997) (in German).

  189. 189.

    R. Dorai, Modeling of plasma remediation of NO x using global kinetic models accounting for hydrocarbons, MS Thesis, University of Illinois at Urbana-Champlaign, 2000, ftp://uigelz.ece.uiuc,.edu/pub/theses/rajesh_ms_thesis.pdf.

  190. 190.

    S. Müller, J. Conrads, and W. Best, in Proc. 7th Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE VII), Greifswald (2000), Vol. 2, pp. 340–344.

  191. 191.

    R. V. de Saint-Auney, Chimie et Industrie 29, 1011(1933).

    Google Scholar 

  192. 192.

    Yu. N. Zhitnev and Yu. V. Filippov, Moscow University Chemistry Bull. 22, 5(1967).

    Google Scholar 

  193. 193.

    J. Rutkowsky, H. Drost, and R. Mach, Beitr. Plasmaphys. 23, 181(1983).

    Google Scholar 

  194. 194.

    D. I. Slovetsky, Pure Appl. Chem. 60, 753(1988).

    Google Scholar 

  195. 195.

    B. Eliasson, CO2 Chemistry: An Option for CO2 Emission Control? in Carbon Dioxide Chemistry: Environmental Issues (J. Paul and C.-M. Pradier, eds.), The Royal Soc. Chem., Cambridge (1994), pp. 5–15.

    Google Scholar 

  196. 196.

    S. S. Shepelev, H. D. Gesser, and N. R. Hunter, Plasma Chem. Plasma Process. 13, 479(1993).

    Google Scholar 

  197. 197.

    K. Okazaki, in Proc. Int. Symp. on CO 2 Fixation and Efficient Utilization of Energy, Tokyo, Japan (1993), pp. 37–42.

  198. 198.

    R. Bhatnagar and R. G. Mallinson, Methane conversion in an ac electric discharges at ambient conditions, in Methane and Alkane Conversion Chemistry (M. M. Bhasin and D. W. Slocum, eds.), Plenum Press, New York (1995), pp. 249–264.

    Google Scholar 

  199. 199.

    O. Motret, S. Pellerin, M. Nikravech, V. Massereau, and J.-M. Pouvesle, Plasma Chem. Plasma Process. 17, 393(1997).

    Google Scholar 

  200. 200.

    L.-M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Plasma Chem. Plasma Process. 18, 375(1998).

    Google Scholar 

  201. 201.

    L. M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Energy and Fuels 12, 1191(1998).

    Google Scholar 

  202. 202.

    K. V. Kozlov, P. Michel, and H.-E. Wagner, in Proc. 7th Int. Symp. on High Pressure Low Temp. Plasma Chem. (HAKONE VII), Greifswald (2000), Vol. 2, pp. 262–266.

  203. 203.

    B. Eliasson, U. Kogelschatz, B. Xue, and L.-M. Zhou, Ind. Eng. Chem. Res. 37, 3350(1998).

    Google Scholar 

  204. 204.

    B. Eliasson, C. Liu, and U. Kogelschatz, Ind. Eng. Chem. Res. 39, 1221(2000).

    Google Scholar 

  205. 205.

    K. Zhang, B. Eliasson, and U. Kogelschatz, Energy and Fuels 15, 395(2001).

    Google Scholar 

  206. 206.

    U. Kogelschatz, L.-M. Zhou, B. Xue, and B. Eliasson, Production of synthesis gas through plasma-assisted reforming of greenhouse gases, in Greenhouse Gas Control Technologies (B. Eliasson, P. F. W. Riemer, and A. Wokaun, eds.), Pergamon, Amsterdam (1999), pp. 385–390.

    Google Scholar 

  207. 207.

    M. Kraus, W. Egli, K. Haffner, B. Eliasson, U. Kogelschatz, and A. Wokaum, Phys. Chem. Chem. Phys. 4, 668(2002).

    Google Scholar 

  208. 208.

    D. A. Markgraf, Corona Treatment: An Overview, http://www.enerconind.com/treating/papers/overview/overview.pdf, (2001).

  209. 209.

    J. L. Linsley Hood, in Proc. 6th Int. Conf. on Gas Discharges and Their Applications (GD-80), Edinburgh (1980), pp. 86–90.

  210. 210.

    T. Uehara, Corona discharge treatment of polymers, in Adhesion Promotion Techniques: Technological Application (K. L. Mittal and A. Pizzi, eds.), Marcel Dekker, New York, Basel (1999), Chapter 7, pp. 139–174.

    Google Scholar 

  211. 211.

    K. Pochner, W. Neff, and R. Leber, Surf. Coat. Technol. 74/75, 394(1995).

    Google Scholar 

  212. 212.

    S. Meiners, J. G. H. Salge, E. Prinz, and F. Förster, Surf. Coat. Technol. 98, 1121(1998).

    Google Scholar 

  213. 213.

    M. Hudis, Plasma Treatment of Solid Materials, in Techniques and Applications of Plasma Chemistry (J. R. Hollahan and A. T. Bell, eds.), John Wiley & Sons, New York (1974), Chapter 3, pp. 113–147.

    Google Scholar 

  214. 214.

    D. Briggs, Applications of XPS in Polymer Technology, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (D. Briggs and M. P. Seah, eds.), John Wiley & Sons, Chichester (1983), Chapter 9, pp. 359–396.

    Google Scholar 

  215. 215.

    X. J. Dai and L. Kviz, Study of atmospheric and low pressure plasma modification on the surface properties of synthetic and natural fibres, Textile Institute 81st World Conf., Melbourne, Australia, April 2001 (www.tft.csiro.au).

    Google Scholar 

  216. 216.

    F. D. Egitto and L. J. Matienzo, IBM J. Res. Dev. 38, 423(1994).

    Google Scholar 

  217. 217.

    C. M. Chan, T. M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24, 1(1996).

    Google Scholar 

  218. 218.

    M. R. Wertheimer, L. Martinu, and J. E. Klemberg-Sapieha, Plasma Treatment of polymers to improve adhesion, in Adhesion Promotion Techniques: Technological Application (K. L. Mittal and A. Pizzi, eds.), Marcel Dekker, New York, Basel (1999), Chapter 5, pp. 191–204.

    Google Scholar 

  219. 219.

    O. D. Greenwood, R. D. Boyd, J. Hopkins, and J. P. S. Badyal, J. Adhesion Sci. Technol. 9, 311(1995).

    Google Scholar 

  220. 220.

    J. Salge, J. de Physique IV 5, C5–583 (1995).

    Google Scholar 

  221. 221.

    R. Thyen, A. Weber, and C.-P. Klages, Surf. Coat. Technol. 97, 426(1997).

    Google Scholar 

  222. 222.

    F. Denes, Z. Q. Hua, W. J. Simonsick, and D. J. Aaserud, J. Appl. Polymer Sci. 71, 1627(1999).

    Google Scholar 

  223. 223.

    P. Cocolios, F. Coeuret, J.-L. Gelot, A. Villermet, E. Prinz, and F. Förster, Coating 32, 314(1999).

    Google Scholar 

  224. 224.

    S. P. Bugaev, A. D. Korotaev, K. V. Oskomov, and N. S. Sochugov, Surf. Coat. Technol. 96, 123(1997).

    Google Scholar 

  225. 225.

    D. Liu, S. Yu, T. Ma, Z. Song, and X. Yang, Jpn. J. Appl. Phys. 39, 3359(2000).

    Google Scholar 

  226. 226.

    Z. Falkenstein and J. J. Coogan, J. Appl. Phys. 82, 6273(1997).

    Google Scholar 

  227. 227.

    F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, in Proc. 10th Int. Conf. on Gas Discharges and Their Applications (GD-92), Swansea (1992), pp. 730–733.

  228. 228.

    J. R. Roth, M. Laroussi, and C. Liu, in Proc. 27th IEEE ICOPS, Tampa (1992), Paper #P21.

  229. 229.

    P. P. Tsai, L. C. Wadsworth, and J. R. Roth, Textile Res. J. 67, 359(1997).

    Google Scholar 

  230. 230.

    N. Gherardi, S. Martin, and F. Massines, J. Phys. D: Appl. Phys. 33, L104(2000).

    Google Scholar 

  231. 231.

    M. Kogoma and S. Okazaki, J. Phys. D: Appl. Phys. 27, 1985(1994).

    Google Scholar 

  232. 232.

    T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 23, 1125(1990).

    Google Scholar 

  233. 233.

    S. Okazaki, S. M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D: Appl. Phys. 26, 889(1993).

    Google Scholar 

  234. 234.

    M. Kogoma, S. Okazaki, N. Kanda, H. Uchiyama, and H. Jinno, in Proc. Jpn. Symp. Plasma Chem. 4 (1991), pp. 345–350.

    Google Scholar 

  235. 235.

    F. Massines and G. Gouda, J. Phys. D: Appl. Phys. 31, 3411(1998).

    Google Scholar 

  236. 236.

    F. Massines, R. Messaoudi, and C. Mayoux, Plasmas and Polymers 3, 43(1998).

    Google Scholar 

  237. 237.

    M. Laroussi, IEEE Trans. Plasma Sci. 24, 1188(1996).

    Google Scholar 

  238. 238.

    T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, IEEE Trans. Plasma Sci. 28, 41(2000).

    Google Scholar 

  239. 239.

    M. Laroussi, I. Alexeff, and W. L. Kang, IEEE Trans. Plasma Sci. 28, 184(2000).

    Article  Google Scholar 

  240. 240.

    M. Laroussi, G. S. Sayler, B. B. Glascock, B. McCurdy, M. R. Pearce, N. G. Bright, and C. M. Malott, IEEE Trans. Plasma Sci. 27, 34(1999).

    Google Scholar 

  241. 241.

    S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, Laser Eng. 5, 171(1977) (in Japanese).

    Google Scholar 

  242. 242.

    M. Tanaka, S. Yagi, and N. Tabata, in Proc. 8th Int. Conf. on Gas Discharges and Their Applications (GD-85), Oxford (1985), pp. 551–554.

  243. 243.

    K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi, IEEE J. Quantum Electron. 25, 836(1989).

    Google Scholar 

  244. 244.

    S. Yagi and M. Kuzumoto, Australian J. Phys. 48, 411(1995).

    Google Scholar 

  245. 245.

    M. Kuzumoto, S. Ogawa, and S. Yagi, J. Phys. D: Appl. Phys. 22, 1835(1989).

    Google Scholar 

  246. 246.

    S. Wienecke, S. Born, and W. Viöl, J. Phys. D: Appl. Phys. 33, 1282(2000).

    Google Scholar 

  247. 247.

    B. Gellert and U. Kogelschatz, Appl. Phys. B52, 14(1991).

    Google Scholar 

  248. 248.

    Y. Tanaka, J. Opt. Soc. Am. 45, 710(1955).

    Google Scholar 

  249. 249.

    E. N. Pavlovskaya and A. V. Yakovleva, Opt. Spectros. (USSR) 54, 132(1983).

    Google Scholar 

  250. 250.

    G. A. Volkova, N. N. Krillova, E. N. Pavlovskaya, and A. V. Yakovleva, J. Appl. Spec-trosc. 41, 1194(1984).

    Google Scholar 

  251. 251.

    B. Eliasson and U. Kogelschatz, Appl. Phys. B46, 299(1988).

    Google Scholar 

  252. 252.

    A. P. Gochelashvili, A. V. Dem'yanov, J. V. Kochetov, and L. R. Yangurazova, Laser Phys. 3, 140(1993).

    Google Scholar 

  253. 253.

    V. V. Ivanov, K. S. Klopovskii, Yu. A. Mankelevich, A. T. Rakhimov, T. V. Rakhimova, G. B. Rulev, and V. B. Saenko, Laser Phys. 6, 654(1996).

    Google Scholar 

  254. 254.

    F. Vollkommer and L. Hitzschke, in Proc. 8th Int. Symp. on the Science and Technology of Light Sources (LS-8), Greifswals (1998), pp. 51–60.

  255. 255.

    A. Oda, H. Sugarawa, Y. Sakai, and H. Akashi, J. Phys. D: Appl. Phys. 33, 1507(2000).

    Google Scholar 

  256. 256.

    A. M. Boichenko, S. I. Yakovlenko, and V. F. Tarasenko, Laser and Particle Beams 18, 655(2000).

    Google Scholar 

  257. 257.

    R. J. Carman, B. K. Ward, and R. P. Mildren, in Proc. 25th Int. Conf. on Phenomena in Ionized Gases (XXV ICPIG), Nagoya 2001, Vol. 4, pp. 331–332.

  258. 258.

    U. Kogelschatz, in Proc. 20th Int. Conf. on Phenomena in Ionized Gases (XX ICPIG), Pisa (1991), Invited Papers, pp. 218–227.

  259. 259.

    H. Esrom and U. Kogelschatz, Appl. Surf. Sci. 54, 440(1992).

    Google Scholar 

  260. 260.

    M. Lenk and R. Mehnert, in Proc. Rad Tech Europe, Basle (2001), pp. 153–158.

  261. 261.

    H. Kumagai and M. Obara, Appl. Phys. Lett. 54, 2619(1989).

    Google Scholar 

  262. 262.

    H. Kumagai and M. Obara, Appl. Phys. Lett. 55, 1583(1989).

    Google Scholar 

  263. 263.

    H. Kumagai and K. Toyoda, Appl. Phys. Lett. 59, 2811(1991).

    Google Scholar 

  264. 264.

    Z. Falkenstein and J. J. Coogan, J. Phys. D: Appl. Phys. 30, 2704(1997).

    Google Scholar 

  265. 265.

    J.-Y. Zhang and I. W. Boyd, J. Appl. Phys. 84, 1174(1998).

    Google Scholar 

  266. 266.

    T. Gerber, W. Luethy, and P. Burkhardt, Opt. Comm. 35, 242(1980).

    Google Scholar 

  267. 267.

    V. M. Borisov, A. M. Davidovskii, and O. B. Kristoforov, Sov. J. Quantum Electron. 12, 1403(1982).

    Google Scholar 

  268. 268.

    A. M. Boichenko, V. S. Skakun, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, Laser Phys. 4, 635(1994).

    Google Scholar 

  269. 269.

    V. F. Tarasenko, M. I. Lomaev, A. N. Pachenko, V. S. Skakun, and E. A. Sosnin, High-power UV excilamps, in High Power Lasers—Science and Engineering (R. Kossowsky, M. Jelinek, and R. F. Walter, eds.), Kluwer Academic Publishers, Dordrecht (1996), pp. 331–345.

    Google Scholar 

  270. 270.

    J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, Proc. SPIE 3574, 466(1998).

    Google Scholar 

  271. 271.

    S. Bollanti, G. Clementi, P. Di Lazzaro, F. Flora, G. Giordano, T. Letardi, F. Muzzi, G. Shina, and Z. E. Zheng, IEEE Trans. Plasma Sci. 27, 211(1999).

    Google Scholar 

  272. 272.

    A. M. Boichenko, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and S. I. Yakovlenko, Laser Phys. 10, 540(2000).

    Google Scholar 

  273. 273.

    U. Kogelschatz, Appl. Surf. Sci. 54, 410(1992).

    Google Scholar 

  274. 274.

    K. Stockwald and M. Neiger, Contrib. Plasma Phys. 35, 15(1995).

    Google Scholar 

  275. 275.

    J.-Y. Zhang and I. W. Boyd, J. Appl. Phys. 80, 633(1996).

    Google Scholar 

  276. 276.

    I. W. Boyd and J.-Y. Zhang, Nucl. Instrum. Methods B121, 349(1997).

    Google Scholar 

  277. 277.

    U. Kogelschatz, H. Esrom, J.-Y. Zhang, and I. W. Boyd, Appl. Surf. Sci. 168, 29(2000).

    Google Scholar 

  278. 278.

    R. Mehnert, UV Curing Equipment—Monochromatic UV Lamps, in UV and EB Curing Technology and Equipment (R. Mehnert, A. Pincus, I. Janorski, R. Stowe, A. Bereika, eds.), John Wiley/SITA (1999), Chapter 4, pp. 83–105.

  279. 279.

    U. Kogelschatz, UV production in dielectric barrier discharges for pollution control, in Non-Thermal Plasma Techniques for Pollution Control (B. M. Penetrante and S. E. Schultheis, eds.), NATO ASI Series, Vol. G 34, Part B, Springer, Berlin (1993), pp. 339–354.

    Google Scholar 

  280. 280.

    O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671(1993).

    Google Scholar 

  281. 281.

    H. Esrom, J. Demny, and U. Kogelschatz, Chemtronics 4, 202(1989).

    Google Scholar 

  282. 282.

    J.-Y. Zhang, L.-J. Bie, and I. W. Boyd, Jpn. J. Appl. Phys. 37, L27(1998).

    Google Scholar 

  283. 283.

    J.-Y. Zhang, B. Lim, and I. W. Boyd, Thin Solid Films 336, 340(1998).

    Google Scholar 

  284. 284.

    J.-Y. Zhang and I. W. Boyd, Opt. Mater. 9, 251(1998).

    Google Scholar 

  285. 285.

    J.-Y. Zhang and I. W. Boyd, Mat. Sci. Semicond. Process. 3, 345(2000).

    Google Scholar 

  286. 286.

    I. W. Boyd and J.-Y. Zhang, Mat. Res. Soc. Symp. 617, J4.1.1.(2000).

    Google Scholar 

  287. 287.

    H. Esrom, J.-Y. Zhang, and U. Kogelschatz, Mat. Res. Symp. Proc. 236, 39(1992).

    Google Scholar 

  288. 288.

    J.-Y. Zhang, H. Esrom, U. Kogelschatz, and G. Emig, Modification of polymers with UV excimer radiation from lasers and lamps, J. Adhesion Sci. Technol. 8, 1179(1994).

    Google Scholar 

  289. 289.

    J.-Y. Zhang, H. Esrom, G. Emig, and U. Kogelschatz, Modification of polymers with UV excimer radiation from lasers and lamps, in Polymer Surface Modification: Relevance to Adhesion (K. L. Mittal, ed.), VSP International Science Publishers, Utrecht (1996) pp. 153–185.

    Google Scholar 

  290. 290.

    H. Esrom, Y.-J. Zhang, and U. Kogelschatz, Photochemical modification and etching of PTFE with excimer VUV/UV radiation in Polymer Surfaces and Interfaces: Characterization, Modification and Application (K. L. Mittal and K.-W. Lee, eds.), VSP International Science Publishers (1997), pp. 27–35.

  291. 291.

    I. W. Boyd, V. Craciun, and A. Kazor, Jpn. J. Appl. Phys. 32, 6141(1993).

    Google Scholar 

  292. 292.

    V. Craciun, B. Hutton, D. E. Williams, and I. W. Boyd, Electron. Lett. 34, 71(1998).

    Google Scholar 

  293. 293.

    J.-Y. Zhang and I. W. Boyd, Appl. Surf. Sci. 186, 64(2002).

    Google Scholar 

  294. 294.

    J. Heitz, H. Niino, and A. Yabe, Appl. Phys. Lett. 68, 2648(1966).

    Google Scholar 

  295. 295.

    H. Esrom and U. Kogelschatz, Thin Solid Films 218, 231(1992).

    Google Scholar 

  296. 296.

    C. Beneking, H. Dannert, M. Neiger, V. Schorpp, K. Stockwald, and H. Müller, Neuartige UV-Lampen auf der Basis stiller Entladungen, BMFT (Bundesministerium für Forschung und Technologie), Forschungsbericht FKZ 12N5695 (1992) (in German).

  297. 297.

    T. Urakabe, S. Harada, T. Saikatsu, and M. Karino, in Proc. 7th Int. Symp. on the Science and Technology of Light Sources (LS7), Kyoto (1995), pp. 159–160.

  298. 298.

    M. Ilmer, R. Lecheler, H. Schweizer, and M. Seibold, in Proc. SID Int. Symp., Long Beach, CA (2000), Digest of Technical Papers, Vol. XXXI, pp. 931–933.

  299. 299.

    S. Mikoshiba, Gas-discharge displays, in Wiley Encyclopedia of Electrical and Electronic Engineering (J. G. Webster, ed.), Wiley-Interscience, New York (1999), vol. 8, pp. 233–238.

    Google Scholar 

  300. 300.

    J. K. Lee and J. P. Verboncoeur, Plasma display panel in Low Temperature Plasma Physics: Fundamental Aspects and Applications (R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds.), Wiley-VCH: Weinheim (2001), pp. 367–385.

    Google Scholar 

  301. 301.

    H. G. Slottow, IEEE Trans. Plasma Sci. 23, 760(1976).

    Google Scholar 

  302. 302.

    D. L. Bitzer and H. G. Slottow, in Proc. 29th AFIPS Conf., Washington (1966), pp. 541–547.

  303. 303.

    L. Loeb and J. El Baccal, J. Appl. Phys. 33, 1567(1962).

    Google Scholar 

  304. 304.

    W. L. Harries and A. von Engel, Proc. Phys. Soc. (London) B64, 916(1951).

    Google Scholar 

  305. 305.

    H. J. Hoehn and R. A. Martel, IEEE Trans. Electron. Dev. 20, 1078(1973).

    Google Scholar 

  306. 306.

    I. Revel, Ph. Belenguer, J. P. Boeuf, and L. C. Pitchford, Pure Appl. Chem. 71, 1837(1999).

    Google Scholar 

  307. 307.

    R. T. Wegh, H. Donker, E. V. D. van Loef, K. D. Oskam, and A. Meijering, J. Luminesc. 87–89, 1017(2000).

    Google Scholar 

  308. 308.

    M. Miclea, K. Kunze, G. Musa, J. Franzke, and K. Niemax, Spectrochimica Acta B56, 37(2001).

    Google Scholar 

  309. 309.

    K. Okazaki and T. Nozaki, Ultrashort pulsed barrier discharges and applications, Pure Appl. Chem. 74, 317(2002).

    Google Scholar 

  310. 310.

    V. I. Gibalov and G. J. Pietsch, J. Phys. D: Appl. Phys. 33, 2618(2000).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kogelschatz, U. Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing 23, 1–46 (2003). https://doi.org/10.1023/A:1022470901385

Download citation

  • Dielectric-barrier discharges
  • silent discharges
  • non-equilibrium plasmas
  • ozone synthesis
  • pollution control
  • surface treatment
  • CO2 lasers
  • excimer lamps
  • plasma displays