Skip to main content
Log in

Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An approach based on fragmental descriptors (occurrence number of structural fragments in chemical structures) in conjunction with the artificial neural network technique was developed for predicting the physicochemical properties of organic compounds. The construction of neural network models for predicting the viscosity, density, and saturated vapor pressure for various classes of organic compounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. L. Pogliani, Chem. Rev., 2000, 100, 3827.

    Google Scholar 

  2. H. J. Bernstein, J. Chem. Phys., 1952, 20, 263.

    Google Scholar 

  3. H. J. Bernstein, Trans. Faraday Soc., 1962, 58, 2285.

    Google Scholar 

  4. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 1969, 69, 279.

    Google Scholar 

  5. V. M. Tatevskii, Teoriya fiziko-khimicheskikh svoistv molekul i veshchestv [Theory of Physico-Chemical Properties of Molecules and Substances], MGU, Moscow, 1987, 239 pp. (in Russian).

    Google Scholar 

  6. E. A. Smolenskii, Zh. Fiz. Khim., 1964, 38, 1288 [J. Phys. Chem. USSR, 1964, 38 (Engl. Transl.)].

    Google Scholar 

  7. E. A. Smolenskii, Dokl. Akad. Nauk SSSR, 1976, 230, 373 [Dokl. Chem., 1976 (Engl. Transl.)].

    Google Scholar 

  8. C. T. Zahn, J. Chem. Phys., 1934, 2, 671.

    Google Scholar 

  9. M. Sounders, Jr., C. S. Matthews, and C. O. Hurd, Ind. Eng. Chem., 1949, 41, 1037.

    Google Scholar 

  10. M. Sounders, Jr., C. S. Matthews, and C. O. Hurd, Ind. Eng. Chem., 1949, 41, 1048.

    Google Scholar 

  11. J. L. Franklin, Ind. Eng. Chem., 1949, 41, 1070.

    Google Scholar 

  12. J. L. Franklin, J. Chem. Phys., 1953, 21, 2029.

    Google Scholar 

  13. T. L. Allen, J. Chem. Phys., 1959, 31, 1039.

    Google Scholar 

  14. A. J. Kalb, A. L. H. Chung, and T. L. Allen, J. Am. Chem. Soc., 1966, 88, 2938.

    Google Scholar 

  15. V. M. Tatevskii, Khimicheskoe stroenie uglevodorodov i zakonomernosti v ikh fiziko-khimicheskikh svoistvakh [Chemical Structure of Hydrocarbons and Regular Features in Their Physicochemical Properties], MGU, Moscow, 1953, 320 pp. (in Russian).

    Google Scholar 

  16. V. M. Tatevskii, V. A. Benderskii, and S. S. Yarovoi, Zakonomernosti i metody rascheta fiziko-khimicheskikh svoistv parafinovykh uglevodorodov [Regularities and Methods of Calculation of Physicochemical Properties of Paraffin Hydrocarbons], MGU, Moscow, 1960, 114 pp. (in Russian).

    Google Scholar 

  17. V. M. Tatevskii, Klassicheskaya teoriya stroeniya molekul i kvantovaya mekhanika [Classical Theory of Molecular Structure and Quantum Mechanics], Khimiya, Moscow, 1973, 516 pp. (in Russian).

    Google Scholar 

  18. E. A. Smolenskii and L. V. Kocharova, Dokl. Akad. Nauk SSSR, 1982, 264, 112[Dokl. Chem., 1982 (Engl. Transl.)].

    Google Scholar 

  19. D. E. Petelin, V. A. Palyulin, N. S. Zefirov, and J. U. McFarland, Dokl. Akad. Nauk, 1992, 327, 508 [Dokl. Chem., 1992 (Engl. Transl.)].

    Google Scholar 

  20. I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, Conf. "Molecular Graphs in the Chemical Investigations," Abstrs., Kalinin, 1990, 5 (in Russian).

  21. I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, 1-st Vsesoyuz. konf. po teoreticheskoi organicheskoi khimii [1-st All-Union Conf. on Theor. Org. Chem.], Abstrs., Volgograd, 1991, 557 (in Russian).

  22. N. V. Artemenko, I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, Dokl. Akad. Nauk, 2001, 381, 203 [Dokl. Chem., 2001 (Engl. Transl.)].

    Google Scholar 

  23. I. I. Baskin, N. M. Galberstam, V. A. Palyulin, and N. S. Zefirov, VII Vseros. konf. "Neirokomp'yutery i ikh primenenie" NKP-2001 s mezhdunarodnym uchastiem [VII All-Russian Conf. "Neurocomputers, their Applications" NKP-2001 with Int. Participation], Proc., Ed. A. I. Galushkin, V. A. Trapeznikov Institute of Management Problems of the RAS, Moscow, 2001, 419 (in Russian).

    Google Scholar 

  24. M. I. Kumskov, L. A. Ponomareva, E. A. Smolenskii, D. F. Mityushev, and N. S. Zefirov, Izv. Akad. Nauk, Ser. Khim., 1994, 1391 [Russ. Chem. Bull., 1994, 43, 1317 (Engl. Transl.)].

    Google Scholar 

  25. S. M. Free and J. W. Wilson, J. Med. Chem., 1964, 7, 395.

    Google Scholar 

  26. A. Cammarata, J. Med. Chem., 1972, 15, 573.

    Google Scholar 

  27. T. Fujita and T. Ban, J. Med. Chem, 1971, 14, 148.

    Google Scholar 

  28. V. V. Avidon, Khim.-Farm. Zhurn., 1974, 8, 22 [Pharm. Chem. J., 1974, 8 (Engl. Transl.)].

    Google Scholar 

  29. V. V. Avidon, V. S. Arolovich, S. P. Kozlova, and L. A. Piruzyan, Khim.-Farm. Zhurn., 1978, 12, 88 [Pharm. Chem. J., 1978, 12 (Engl. Transl.)].

    Google Scholar 

  30. V. V. Avidon, I. A. Pomerantsev, A. B. Rozenblit, and V. E. Golender, J. Chem. Inf. Comp. Sci., 1982, 22, 207.

    Google Scholar 

  31. A. B. Rozenblit and V. E. Golender, Logical Combinatorial Algorithms for Drug Design, Research Studies Press, Wiley and Sons, New York-Chihester-Brisbane-Toronto, 1983, 352 pp.

    Google Scholar 

  32. Yu. V. Borodina, D. A. Filimonov, and V. V. Poroikov, Pharm. Chem. J., 1996, 30, 760.

    Google Scholar 

  33. D. Filimonov, V. Poroikov, Yu. Borodina, and T. Gloriozova, J. Chem. Inf. Comput. Sci., 1999, 39, 666.

    Google Scholar 

  34. V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, A. A. Lagunin, and A. Kos, J. Chem. Inf. Comput. Sci., 2000, 40, 1349.

    Google Scholar 

  35. S. K. Kotovskaya, L. A. Tyurina, E. Yu. Chernova, G. A. Mokrushina, O. N. Chupakhin, A. P. Novikova, and V. I. Il´enko, Khim.-Farm. Zhurn., 1989, 22, 310 [Pharm. Chem. J., 1989, 22 (Engl. Transl.)].

    Google Scholar 

  36. G. Klopman, J. Am. Chem. Soc., 1984, 106, 7315.

    Google Scholar 

  37. G. Klopman and H. S. Rosenkranz, Mutat. Res., 1994, 305, 33.

    Google Scholar 

  38. A. R. Cunningham, G. Klopman, and H. S. Rosenkranz, Mutat. Res., 1998, 405, 9.

    Google Scholar 

  39. M. Brinn, P. T. Walsh, M. P. Payne, and B. Bott, SAR QSAR Environ. Res., 1993, 1, 169.

    Google Scholar 

  40. M. W. Brinn, M. P. Payne, and P. T. Walsh, Chem. Eng. Res. Des., 1993, 71(A3), 337.

    Google Scholar 

  41. F. R. Burden, Quant. Struct.-Act. Relat., 1996, 15, 7.

    Google Scholar 

  42. T. Hurst and T. Heritage, Thes. 213th ACS Natl. Meeting, San Francisco, CA, 1997, CINF 019.

  43. A. Hoskuldsson, J. Chemometrics, 1988, 2, 211.

    Google Scholar 

  44. N. S. Zefirov and V. A. Palyulin, J. Chem. Inf. Comput. Sci., 2002, 42, 1112.

    Google Scholar 

  45. I. I. Baskin, A. O. Ait, N. M. Galberstam, V. A. Palyulin, M. V. Alfimov, and N. S. Zefirov, Dokl. Akad. Nauk, 1997, 357, 57 [Dokl. Chem., 1997 (Engl. Transl.)].

    Google Scholar 

  46. J. Zupan and J. Gasteiger, Neural Networks for Chemists. An Introduction, Wiley-VCH Publishers, Weinheim-New York-Chichester-Brisbane-Singapore-Toronto, 1993, 1, 244 pp.

    Google Scholar 

  47. I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, Dokl. Akad. Nauk, 1993, 332, 713 [Dokl. Chem., 1993 (Engl. Transl.)].

    Google Scholar 

  48. A. A. Ezhov and S. A. Shumskii, Neirokomp'yuter i ego primenenie v ekonomike [Neurocomputer and its Use in the Economy], MIFI, Moscow, 1998, 57 (in Russian).

    Google Scholar 

  49. M. Chastrette, D. Cretin, and F. Tiyal, C. R. Acad. Sci., 1994, 318, 1059.

    Google Scholar 

  50. A. Bondi, J. Phys. Chem., 1964, 68, 441.

    Google Scholar 

  51. S. C. Basak, B. D. Gute, and G. D. Grunwald, J. Chem. Inf. Comput. Sci., 1997, 37, 651.

    Google Scholar 

  52. C. Liang and D. A. Gallagher, J. Chem. Inf. Comput. Sci., 1998, 38, 321.

    Google Scholar 

  53. M. Karelson and A. Perkson, Comput. Chem., 1999, 23, 49.

    Google Scholar 

  54. A. A. Gakh, E. G. Gakh, B. G. Stumper, and D. W. Noid, J. Chem. Inf. Comput. Sci., 1994, 34, 832.

    Google Scholar 

  55. R. Zhang, S. Liu, M. Liu, and Z. Hu, Comput. Chem., 1997, 21, 335.

    Google Scholar 

  56. S. Liu, R. Zhang, M. Liu, and Z. Hu, J. Chem. Inf. Comput. Sci., 1997, 37, 1146.

    Google Scholar 

  57. K. G. Joback and R. C. Reid, Chem. Eng. Commun., 1987, 57, 233.

    Google Scholar 

  58. P. Škubla, Collect. Czech. Chem. Commun., 1985, 50, 1907.

    Google Scholar 

  59. C. Hansch and T. Fujita, J. Am. Chem. Soc., 1964, 86, 1616.

    Google Scholar 

  60. T. Fujita, J. Iwasa, and C. Hansch, J. Am. Chem. Soc., 1964, 86, 5175.

    Google Scholar 

  61. O. Ivanciuc, T. Ivanciuc, P. A. Filip, and D. Cabrol-Bass, J. Chem. Inf. Comput. Sci., 1999, 39, 515.

    Google Scholar 

  62. A. R. Katritzky, K. Chen, Y. L. Wang, M. Karelson, B. Lucic, N. Trinajstic, T. Suzuki, and G. Schuurmann, J. Phys. Org. Chem., 2000, 13, 80.

    Google Scholar 

  63. T. Suzuki, K. Ohtaguchi, and K. Koide, Comput. Chem. Eng., 1996, 20, 161.

    Google Scholar 

  64. T. Suzuki, R.-U. Ebert, and G. Schuurmann, J. Chem. Inf. Comput. Sci., 1997, 37, 1122.

    Google Scholar 

  65. V. E. Vapnik and A. Ya. Chervonenkis, Teoriya raspoznavaniya obrazov [Image Recognition Theory], Nauka, Moscow, 1979, 237 pp. (in Russian).

  66. J. Rissanen, in Complexity, Entropy and the Physics of Information, Ed. W. H. Zurek, Addison-Wesley, California, Redwood City, 1990, 117.

    Google Scholar 

  67. Flukalog Database, Fluka Chemie AG, 1995.

  68. E. S. Goll and P. C. Jurs, J. Chem. Inf. Comput. Sci., 1999, 39, 1081.

    Google Scholar 

  69. A. R. Katritzky, U. Maran, V. S. Lobanov, and M. Karelson, J. Chem. Inf. Comput. Sci., 2000, 40, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artemenko, N.V., Baskin, I.I., Palyulin, V.A. et al. Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds. Russian Chemical Bulletin 52, 20–29 (2003). https://doi.org/10.1023/A:1022467508832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022467508832

Navigation