Skip to main content
Log in

Changes in the Redox State in the Retina and Brain During the Onset of Diabetes in Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is thought to result from chronic changes in the metabolic pathways of the retina. Hyperglycemia leads to increased intracellular glucose concentrations, alterations in glucose degradation and an increase in lactate/pyruvate ratio. We measured lactate content in retina and other ocular and non-ocular tissues from normal and diabetic rats in the early stages of streptozotocin-induced diabetes. The intracellular redox state was calculated from the cytoplasmic [lactate]/[pyruvate] ratio.

Elevated lactate concentration were found in retina and cerebral cortex from diabetic rats. These concentrations led to a significant and progressive decrease in the NAD+/NADH ratio, suggesting that altered glucose metabolism is an initial step of retinopathy. It is thus possible that tissues such as cerebral cortex have mechanisms that prevent the damaging effect of lactate produced by hyperglycemia and/or alterations of the intracellular redox state

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brownlee, M., and Cerami, A. 1981. The biochemistry of the complications of diabetes mellitus. Ann. Rev. Biochem. 50:385–432.

    PubMed  Google Scholar 

  2. Kirber, W. M., Nichols, C. W., Grimes, P.A., Winegard, A. I., and Laties, A. M. 1980. A permeability defect of the retinal pigment epithelium. Arch. Ophthalmol. 98:725–728.

    PubMed  Google Scholar 

  3. Vinores, S. A., and Campochiaro, P. A. 1989. Prevention or moderation of some ultrastructural changes in the RPE and retina of galactosemic rat by aldose reductase inhibition. Exp. Eye Res. 49:495–510.

    PubMed  Google Scholar 

  4. Mac Gregor, L.C., Rosecan, L.R., Laties, A. M., and Matschinsky, F. M. 1986. Altered retinal metabolism in diabetes. J. Biol. Chem. 261:4046–4051.

    PubMed  Google Scholar 

  5. Frank, R. N. 1995. Diabetic retinopathy. Progress in Retinal and Eye Res. 14:361–392.

    Google Scholar 

  6. Hawkins, R. A., and Mans, A. M. 1983. Intermediary metabolism of carbohydrates and other fuels. Pages. 259–294, in Lajtha, A. (ed.), Handbook of Neurochemistry Vol. 3. Plenum Press, New York.

    Google Scholar 

  7. Paschen, W., Djuricic, B., Mies, G., Schmidt-Kastner, R., and Linn, F. 1987. Lactate and pH in the brain: association and dissociation in different pathophysiological states. J. Neurochem. 48:154–159.

    PubMed  Google Scholar 

  8. Greene, D. A., Lattimer, S. A., and Sima, A. A. F. 1987. Sorbitol, myo-inositol and sodium-potassium ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med. 316:599–606.

    PubMed  Google Scholar 

  9. Ottlecz, A., Garcia, C. A., Eichberg, J., and Fox, D. A. 1993. Alterations in retinal Na+, K+-ATPase in diabetes: streptozotocin-induced and Zucker diabetic fatty rats. Curr. Eye Res. 12:1111–1221.

    PubMed  Google Scholar 

  10. Kern, T. S., Kowluru, R. A., and Engerman, R. L. 1994. Abnormalities of retinal metabolism in diabetes or galactosemia, ATPase and glutathione. Invest. Ophthalmol. Vis. Sci. 35:2962–2967.

    PubMed  Google Scholar 

  11. Mackerer, C. R., Paquet, R. J., Mehlman, M. A., and Tobin, R. B. 1971. Oxidation an phosphorylation in liver mitochondria from alloxan and streptozotocin diabetic rats. Proc. Soc. Exp. Biol. 137:992–995.

    Google Scholar 

  12. Noll, F. 1983. In Bergmeyer, J., and Grabal, M. (eds). Methods of Enzymatic Analysis Vol. 6 Pages 582–588. Academic Press, New York.

    Google Scholar 

  13. Lamprecht, W., and Heinz, F. 1983. In: Bergmeyer, J., and Grabal, M. (eds.). Methods of Enzymatic Analysis Vol. 6, Pages 570–577, Academic Press, New York.

    Google Scholar 

  14. Williamson, D. G., Lund, P., and Krebs, H. A. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–527.

    PubMed  Google Scholar 

  15. Bergmeyer, H. U., Bernt, E., and Hess, B. 1963. Pages 283–342, In Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis Academic Press, New York.

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 93:265–275.

    Google Scholar 

  17. De Oliveira, F. 1966. Pericytes in diabetic retinopathy. Br. J. Ophthalmol. 50:134–143.

    PubMed  Google Scholar 

  18. Addison, D. J., Garner, A., and Ashton, N. 1970. Degeneration of intramural pericytes in diabetic retinopathy. Br. Med. J. 1:264–266.

    Google Scholar 

  19. Kern, T. S., and Engerman, R. L. 1993. Discordance of microvascular disease between retina and cerebral cortex. Studies of diabetic and galactosemic dogs. ARVO Abstracts. Invest. Ophthalmol. Vis. Sci. 34:719.

    Google Scholar 

  20. Winkler, B. S. 1981. Glycolytic and oxidative metabolism in relation to retinal function. J. Gen. Physiol. 77:667–692.

    PubMed  Google Scholar 

  21. Miceli, M. V., Newsome, D. A., and Schriver, G. W. 1990. Glucose uptake, hexose monophosphate shunt activity, and oxygen consumption in cultured human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 31:277–283.

    PubMed  Google Scholar 

  22. Hightower, K. R., and Harrison, S. E. 1987. The influence of calcium on glucose metabolism in the rabbit lens. Invest. Ophthalmol. Vis. Sci. 28:1433–1436.

    PubMed  Google Scholar 

  23. Masterson, E., and Chader, G. J. 1981. Characterization of glucose transport by cultured chick pigmented epithelium. Exp. Eye Res. 32:279–289.

    Article  PubMed  Google Scholar 

  24. Salceda, R. 1986. Isolation and biochemical characterization of frog retinal pigment epithelium cells. Invest. Ophthalmol. Vis. Sci. 27:1172–1176.

    PubMed  Google Scholar 

  25. Kowluru, R. A., Kern, T. S., and Engerman, R. L. 1997. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. IV Antioxidant defense system. Free Radical Biol. and Medicine 22:587–592.

    Article  Google Scholar 

  26. Ostroy, S. E., Svoboda, R. A., and Wilson, M. J. 1990. A stage in glycolysis controls the metabolic adjustments of vertebrate rod phostoreceptors upon illumination. Biochem. Biophys. Res. Commun. 168:155–160.

    Article  PubMed  Google Scholar 

  27. Lolley, R. N. 1969. Metabolic and anatomical specialization within the retina. Pages 473–504, In Lajtha, A. (ed.), Handbook of Neurochemistry Vol. 3. Plenum Press, New York.

    Google Scholar 

  28. Williamson, J. R., Chang, K., and Frangos, M. 1993. Hyperglycemic pseudohypoxia and diabetic complication. Diabetes 42:801–813.

    PubMed  Google Scholar 

  29. Jaeschke, H., Kleinwaechter, C., and Wendel, A. 1992. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem. Biol. Interactions 81:57–68.

    Article  Google Scholar 

  30. Nishimura, C., and Kuriyama, K. 1985. Alterations of lipid peroxide and endogenous antioxidant contents in retina of streptozotocin-induced diabetic rats: effect of vitamin A administration. Jpn. J. Pharmacol. 37:365–372.

    PubMed  Google Scholar 

  31. Shank, R. P., Bennett, G. S., Freytag, S. O., and Campbell, G. L. 1985. Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329:364–367.

    Article  PubMed  Google Scholar 

  32. Dringen, R., Schmoll, D., Cesar, M., and Hamprecht, B. 1993. Incorporation of radioactivity from [14C] lactate into the glycogen of cultured mouse astroglial cells. Biol. Chem. Hoppe-Seyler 374:343–347.

    PubMed  Google Scholar 

  33. Ide, T., Steinke, J., and Cahill, G. F. 1969. Metabolic interactions of glucose, lactate and β-hydroxybutyrate in rat brain slices. Am. J. Physiol. 217:784–792.

    PubMed  Google Scholar 

  34. Goldman, S. S., and Witkovsky, P. 1987. Evidence for glucogenesis in the amphibian retina. Exp. Eye Res. 44:65–71.

    PubMed  Google Scholar 

  35. La Cour, M., Lin, H., Kenyon, E., and Miller, S. S. 1994. Lactate transport in freshly isolated human fetal retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 35:434–442.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salceda, R., Vilchis, C., Coffe, V. et al. Changes in the Redox State in the Retina and Brain During the Onset of Diabetes in Rats. Neurochem Res 23, 893–897 (1998). https://doi.org/10.1023/A:1022467230259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022467230259

Navigation