Skip to main content
Log in

Identifying Monoaminergic, GABAergic, and Cholinergic Characteristics in Immortalized Neuronal Cell Lines

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We measured the concentration of neurotransmitters in immortalized neural cell lines of hippo-campal, septal, brainstem and cerebellar origin. While in most of the cell lines, concentrations of monoamines, γ-aminobutyric acid (GABA) and acetylcholine were low, in some they were markedly higher. This made it quite easy to identify possible monoaminergic, GABAergic or cholinergic cell lines. However all the cell lines contained glutamate and aspartate and there were no outstanding differences in levels of these amino acids differences between the cell lines. Deprivation of serum, which made the cells acquire a more differentiated morphology, caused an increase in the intracellular concentrations of some compounds and a switch from multiple to a single transmitter in the case of some cell lines. It suggested that measurement of transmitter concentrations combined with serum deprivation studies, may provide an indication of the neurochemical characteristics of immortalised neuronal cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jat, P. S., and Sharp, P. A. 1989. Cell lines established by a temperature-sensitive Simian Virus 40 large-T-antigene gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9:1672–1681.

    Google Scholar 

  2. Hammond, D. N., Wainer, B. H., Tonsgard, J. H., and Heller, A. 1986. Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science 234:1237–1240.

    Google Scholar 

  3. Takeuchi, A. M., Gallyas, F. Jr., Takahashi, K., and Tabira, T. 1991. Establishment of GABAergic-and glutamatergic-like neuronal cell lines from hippocampus. Bull. Japan. Neurochem. Soc. 30:222–223.

    Google Scholar 

  4. Satoh, J., Gallyas, F. Jr., Endoh, M., Yamamura, T., Kunishita, T., Kobayashi, T., and Tabira, T. 1992. Establishment of mouse-immortalized hybrid clones expressing characteristics of differentiated neurons derived from the cerebellar and brain stem regions. J. Neurobiol. 23:905–919.

    Google Scholar 

  5. Satoh, J., Gallyas, F. Jr., Endoh, M., Yamamura, T., Kunishita, T., and Tabira, T. 1992. Coexistence of cholinergic, catecholaminergic, serotonergic and glutamatergic neurotransmitter markers in mouse clonal hybrid neurons derived from the septal region. J. Neurosci. Res. 32:127–137.

    Google Scholar 

  6. Tsokos, M., Scrapa, S., Ross, R. A., and Triche, T. J. 1987. Differentiation of human neuroblastoma recapitulates neural crest development: Study of morphology, neurotransmitter enzymes, and extracellular matrix proteins. Am. J. Pathol. 128:484–496.

    Google Scholar 

  7. Lanciotti, M., Montaldo, P. G., Folghera, S., Lucarelli, E., Cornaglia-Ferraris, P., and Ponzoni, M. 1992. A combined evaluation of biochemical and morphological changes during human neuroblastoma cell differentiation. Cell. Molec. Neurobiol. 12:225–240.

    Google Scholar 

  8. Rabinovsky, E. D., Le, W-D., and McManaman, J. L. 1992. Differential effects of neurotrophic factors on neurotransmitter development in the IMR-32 human neuroblastoma cell line. J. Neurosci. 12:171–179.

    Google Scholar 

  9. Belin, M. F., Nanopoulos, D., Didier, M., Aguera, M., Steinbusch, H., Verhofstad, A., Maitre, M., and Pujol, J. F. 1983. Immunohistochemical evidence for the presence of g-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of rat using antibodies to glutamate decarboxylase and serotonin. Brain. Res. 275:329–339.

    Google Scholar 

  10. Kosaka, T., Kosaka, K., Hataguchi, Y., Nagatsu, I., Wu, J-Y., Ottersen, O. P., Storm-Mathisen, J., and Hama K. 1987. Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp. Brain. Res. 66:191–210.

    Google Scholar 

  11. Kosaka, T., Tauchi, M., and Dahl, J. L. 1988. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp. Brain. Res. 70:605–617.

    Google Scholar 

  12. Miceli, M. O., Post, C. A., and van der Kooy, D. 1987. Catecholamine and serotonin colocalization in projection neurons of the area postrema. Brain. Res. 412:381–385.

    Google Scholar 

  13. Fisher, R. S., and Levine, M. S. 1989. Transmitter cosynthesis by cortical basal forebrain neurons. Brain. Res. 491:163–168.

    Google Scholar 

  14. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.

    Google Scholar 

  15. Amano, T., Richelson, E., and Nierenberg, M. 1972. Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. USA 69:258–263.

    Google Scholar 

  16. Kamegai, M., Niijima, K., Kunishita, T., Nishizawa, M., Ogawa, M., Araki, M., Konishi, Y., and Tabira, T. 1990. Interleukin 3 as a trophic factor for central cholinergic neurons in vitro and in vivo. Neuron 2:429–436.

    Google Scholar 

  17. Parker, K. K., Norenberg, M. D., and Vernadakis, A. 1980. “Transdifferentiation” of C-6 glial cells in culture. Science 208:179–181.

    Google Scholar 

  18. Yaffe, D., and Saxel, O. 1977. Serial passing and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727.

    Google Scholar 

  19. Ikarashi, Y., Sasahara, T., and Maruyama, Y. 1985. Determination of choline and ACh levels in rat brain by liquid chromatography with electrochemical detection. J. Chromatogr. 322:191–199.

    Google Scholar 

  20. Matson, W. R., Gamache, P. G., Beal, M. F., and Bird, E. D. 1987. EC array sensor concepts and data. Life Sci. 41:905–908.

    Google Scholar 

  21. Parent, A., Cote, P. Y., and Lavoie, B. 1995. Chemical anatomy of primate basal ganglia. Prog. Neurobiol. 46:131–197.

    Google Scholar 

  22. Bacopoulos, N. G., and Bhatnagar, R. K. 1977. Correlation between tyrosine hydroxylase activity and catecholamine concentration or turnover in brain regions. J. Neurochem. 29:639–643.

    Google Scholar 

  23. Hökfelt, T., Johansson, O., and Goldstein, M. 1984. Chemical anatomy of the brain. Science 225:1326–1334.

    Google Scholar 

  24. Herregodts, P., Velkeniers, B., Ebinger, G., Michotte, Y., Vanhaelst, L., and Hooghe-Peters, E. 1990. Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: Analysis by HPLC with electrochemical detection. J. Neurochem. 55:774–779.

    Google Scholar 

  25. Searles, Ch. D., and Singer, H. S. 1988. The identification and characterization of a GABAergic system in the cholinergic neuroblastoma × glioma hybrid clone NG108–15. Brain Res. 448:373–376.

    Google Scholar 

  26. Seil, F. J., Johnson, M. L., Nishi, R., and Nilaver, G. 1992. Tyrosine hydroxylase expression in non-catecholaminergic cells in cerebellar cultures. Brain Res. 569:164–168.

    Google Scholar 

  27. Oka, K., Kojima, K., Togari, A., Nagatsu, T., and Kiss, B. 1984. An integrated scheme for the simultaneous determination of biogenic amines, precursor amino acids and related metabolites by liquid chromatography with electrochemical detection. J. Chromatogr. 308:43–53.

    Google Scholar 

  28. Kagedal, B., and Goldstein, D. S. 1988. Catecholamines and their metabolites. J. Chromatogr. 429:177–233.

    Google Scholar 

  29. Gotti, C., Sher, E., Cabrini, D., Bondiolotti, G., Wanke, E., Mancinelli, E., and Clementi, F. 1987. Cholinergic receptors, ion channels, neurotransmitter synthesis, and neurite outgrowth are independently regulated during the in vitro differentiation of a human neuroblastoma cell line. Differentiation 34:144–155.

    Google Scholar 

  30. Crawford, G. D. Jr., Le, W.-D., Smith, R. G., Xie, W.-J., Stefani, E., and Appel, S. H. 1992. A novel N18TG2 × mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J. Neurosci. 12:3392–3398.

    Google Scholar 

  31. Choi, H. K., Won, L. A., Kontur, P. J., Hammond, D. N., Fox, A. P., Wainer, B. H., Hoffman, P. C., and Heller, A. 1991. Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 552:67–76.

    Google Scholar 

  32. Blusztajn, J. K., Venturini, A., Jackson, D. A., Lee, H. J., and Wainer, B. H. 1992. ACh synthesis and release in enhanced by dibutiryl cyclic AMP in a neuronal cell line derived from mouse septum. J. Neurosci. 12:793–799.

    Google Scholar 

  33. Ghahary, A., Vriend, J., and Cheng, K.-W. 1989. Modification of the indolamine content in neuroblastoma × glioma hybrid NG108–15 cells upon induced differentiation. Cell. Molec. Neurobiol. 9:343–355.

    Google Scholar 

  34. Fredriksen, K., Jat, P. S., Valtz, N., Levy, D., and McKay, R. 1988. Immortalization of precursor cells from the mammalian CNS. Neuron 1:439–448.

    Google Scholar 

  35. Simmons, M. L., and Murphy, S. 1992. Induction of nitric oxide synthase in glial cells. J. Neurochem. 59:897–905.

    Google Scholar 

  36. McGee, R., Simpson, P., and Christian, C. N. 1979. Regulation of ACh release from neuroblastoma × glioma hybrid cells. Proc. Natl. Acad. Sci. U.S.A. 75:1314–1318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallyas, F., Satoh, Ji., Takeuchi, A.M. et al. Identifying Monoaminergic, GABAergic, and Cholinergic Characteristics in Immortalized Neuronal Cell Lines. Neurochem Res 22, 569–575 (1997). https://doi.org/10.1023/A:1022465918695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022465918695

Navigation