Skip to main content
Log in

Commutativity of rings through a Streb's result

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we investigate commutativity of rings with unity satisfying any one of the properties:

$$\left\{ {{\text{1 - }}g\left( {yx^m } \right)} \right\}\left[ {yx^m - x^r f\left( {yx^m } \right)x^s ,x} \right]\left\{ {1 - h\left( {yx^m } \right)} \right\} = 0$$
$$\left\{ {{\text{1 - }}g\left( {yx^m } \right)} \right\}\left[ {x^m y - x^r f\left( {yx^m } \right)x^s ,x} \right]\left\{ {1 - h\left( {yx^m } \right)} \right\} = 0$$
$$y^t \left[ {x,y^n } \right] = g\left( x \right)\left[ {f\left( x \right),y} \right]h\left( x \right){\text{ and }}\left[ {x,y^n } \right]y^t = g\left( x \right)\left[ {f\left( x \right),y} \right]h\left( x \right)$$

for some f(X) in \(X^2 \mathbb{Z}\left[ X \right]\) and g(X), h(X) in \(\mathbb{Z}\left[ X \right]\) where m ≥ 0, r ≥ 0, s ≥ 0, n > 0, t > 0 are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements x and y for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings. Rad. Mat. 3 (1987), 255–260.

    Google Scholar 

  2. M. Chacron: A commutativity theorem for rings. Proc. Amer. Math. Soc. 59 (1976), 211–216.

    Google Scholar 

  3. I. N. Herstein: Two remarks on commutativity of rings. Canad. J. Math. 7 (1955), 411–412.

    Google Scholar 

  4. T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982)), 267–268.

    Google Scholar 

  5. M. A. Khan: Commutativity of right s-unital rings with polynomial constraints. J. Inst. Math. Comput. Sci. 12 (1999), 47–51.

    Google Scholar 

  6. H. Komatsu and H. Tominaga: Chacron's condition and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101–120.

    Google Scholar 

  7. E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. Math. Sci. 7 (1984), 513–517.

    Google Scholar 

  8. M. O. Sear \(\ddot c\) oid and D. MacHale: Two elementary generalisations of Boolean rings. Amer. Math. Monthly, 93 (1986), 121–122.

    Google Scholar 

  9. W. Streb: Zur Struktur nichtkommutative Ringer. Math. J. Okayama Univ. 31 (1989), 135–140.

    Google Scholar 

  10. H. Tominaga and A. Yaqub: Commutativity theorems for rings with constraints involving a commutative subset. Results Math. 11 (1987), 186–192.

    Google Scholar 

  11. J. Tong: On the commutativity of a ring with identity. Canad. Math. Bull. 72 (1984), 456–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A. Commutativity of rings through a Streb's result. Czechoslovak Mathematical Journal 50, 791–801 (2000). https://doi.org/10.1023/A:1022464612374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022464612374

Navigation