Skip to main content
Log in

High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Hybrid poplars (Populus tremula ×Populus tremuloides) have been genetically engineered viaAgrobacterium tumefaciens, to express a syntheticcry3Aa gene derived from the native Bacillusthuringiensis subsp. tenebrionis cry3Aa gene.The presence and the expression of the transgene have been verified in fourtransgenic poplar lines, using Southern, northern and western analyses. Thetransgenic poplar's toxicity towards the phytophagous beetleChrysomela tremulae (Coleoptera, Chrysomelidae) has beenassessed on six month-old greenhouse-grown selected plants in laboratoryconditions. Laboratory experiments consisted of feeding tests of fresh detachedleaves on C. tremulae at all developmental stages. Ourresults indicate that the transgenic poplar leaves, expressing a Cry3Aa proteinamount in a range of 0.05–0.0025% of total soluble protein, weredefinitely deleterious for C. tremulae, regardless of thedevelopmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang M.J., Brody M.S., Cardineau G., Eagan N., Roush R.T., Shemaker C.K. et al. 1993. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol. Biol. 21: 1131–1145.

    Google Scholar 

  • Augustin S. and Lévieux J. 1993. Life history of the poplar beetle Chrysomela tremulae in the central region of France. Can. Ent. 125: 399–401.

    Google Scholar 

  • Becker D. 1990. Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acid Res. 18: 203.

    Google Scholar 

  • Betz F.S., Hammond B.G. and Fuchs R.L. 2000. Safety and advantages of Bacillus thuringiensis protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156–173.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem. 72: 248–254.

    Google Scholar 

  • Carozzi N. and Koziel M. 1997. Advances in insect control: the role of transgenic plants. Taylor and Francis Ltd.

  • Carroll J., Li J. and Ellar D.J. 1989. Proteolytic processing of a coleopteran-specific delta-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem. J. 261: 99–105.

    Google Scholar 

  • Cheng X., Sardana R., Kaplan H. and Altosaar I. 1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767–2772.

    Google Scholar 

  • Comai L., Moran P. and Maslyar D. 1990. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol. Biol. 15: 373–381.

    Google Scholar 

  • Cornu D., Leplé J.C., Bonadé-Bottino M., Ross A., Augustin S., Delplanque A. et al. 1996. Expression of a proteinase inhibitor and a Bacillus thuringiensis delta-endotoxin in transgenic poplars. In: Ahuja M.R. and et al (eds), Somatic Cell Genetics and Molecular Genetics of Trees. Kluwer Academic Publishers., pp. 131–136.

  • Dandekar A.M., McGranahan G.H., Vail P.V., Urastu S.L., Leslie C.A. and Tebbets J.S. 1998. High levels of expression of fulllength cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131: 181–193.

    Google Scholar 

  • Estruch J.J., Carozzi N.B., Desai N., Duck N.B., Warren G.W. and Koziel M.G. 1997. Transgenic plants: an emerging approach to pest control. Nature Biotech. 15: 137–141.

    Google Scholar 

  • Génissel A., Bourguet D. and Viard F. 2000. Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula X tremuloides. Hereditas 133: 85–93.

    Google Scholar 

  • Hails R.S. 2000. Genetically modified plants - the debate continues. Trends Ecol. Evol. 15: 14–18.

    Google Scholar 

  • Harcourt R.L., Kyozuka J., Floyd R.B., Bateman K.S., Tanaka H., Decroocq V. et al. 2000. Insect-and herbicide-resistant transgenic eucalypts. Mol. Breed. 6: 307–315.

    Google Scholar 

  • James R.R., Croft B.A. and Strauss S.H. 1999. Susceptibility of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to different strains and transgenic toxins of Bacillus thuringiensis. Environ. Entomol. 28: 108–115.

    Google Scholar 

  • Johnson D.E. and McGaughey W.H. 1996. Natural mortality among Indianmeal moth larvae with resistance to Bacillus thuringiensis. J. Invert. Pathol. 68: 170–172.

    Google Scholar 

  • Krieg V.A., Huger A.M., Langenbruch G.A. and Schnetter W. 1983. Bacillus thuringiensis var. tenebrionis: ein neuer, gegenüber larven von coleopteren wirksamer pathotyp. Z. Ang. Ent. 96: 500–508.

    Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Lawrence S.D. and Novak N.G.2001. A rapid method for the production and characterization of recombinant insecticidal proteins in plants. Mol. Breed. 8: 139–146.

    Google Scholar 

  • Leplé J.C., Bonadé-Bottino M., Augustin S., Pilate G., Le Tan Dumanois V., Delplanque A. et al. 1995. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1: 319–328.

    Google Scholar 

  • Leplé J.C., Miranda Brasileiro A.C., Michel M.F., Delmotte F. and Jouanin L. 1992. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep. 11: 137–141.

    Google Scholar 

  • Olsen K.M. and Daly J.C. 2000. Plant-toxin interactions in transgenic B.t. cotton and their effect on mortality of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 93: 1293–1299.

    Google Scholar 

  • Peacock J.W., Schweitzer D.F. and Carter J.L. 1998. Laboratory assessment of the effects of Bacillus thuringiensis on native lepidoptera. Environ. Entomol. 27: 450–457.

    Google Scholar 

  • Perlak F.J., Fuchs R.L., Dean D.A., McPherson S.L. and Fischhoff D.A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    Google Scholar 

  • Perlak F.J., Oppenhuizen M., Gustafson K., Voth R., Sivasupramaniam S., Heering D. et al. 2001. Development and commercial use of Bollgard (R) cotton in the USA - early promises versus today's reality. Plant J. 27: 489–501.

    Google Scholar 

  • Rhim S.L., Cho H.J., Kim B.D., Schnetter W. and Geiger K. 1995. Development of insect resistance in tomato plants expressing the delta-endotoxin gene of Bacillus thuringiensis subsp. tenebrionis. Mol. Breed. 1: 229–236.

    Google Scholar 

  • Robison D.J., McCown B.H. and Raffa K.F. 1994. Responses of gypsy moth (Lepidoptera: Lymantridae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) to transgenic poplar Populus spp., containing a Bacillus thuringiensis delta-endotoxin gene. Environ. Entomol. 23: 1030–1041.

    Google Scholar 

  • Roush R.T. 1998. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixture have not? Phil. Trans. R. Soc. Lond. 353: 1777–1786.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1990. Molecular Cloning: A Laboratory Manual., Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Sekar V., Thompson D.V., Maroney M.J., Bookland R.G. and Adang M.J. 1987. Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc. Natl. Acad. Sci. USA 84: 7036–7040.

    Google Scholar 

  • Sutton D.W., Havstad P.K. and Kemp J.D. 1992. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Trans. Res. 1: 228–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Génissel, A., Leplé, JC., Millet, N. et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis . Molecular Breeding 11, 103–110 (2003). https://doi.org/10.1023/A:1022453220496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022453220496

Navigation