Skip to main content
Log in

Analysis of the Structure of the Bands in the IR Spectrum of β-D Glucose by the Regularized Method of Deconvolution

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Deconvolution of the IR absorption spectrum of β-D glucose in the spectral range 1500–450 cm−1 has been carried out. The results of the deconvolution were compared with the IR and Raman spectra recorded at room and low temperatures and with the data obtained by theoretical calculations for the frequencies of the normal vibrations of the β-D glucose molecule in the crystalline state. It is shown that deconvolution of the IR spectra recorded at room temperature makes it possible to separate the bands observed experimentally only at a very low temperature of the sample and a number of components that were not resolved earlier. The number of bands separated on deconvolution of the IR spectra of β-D glucose in the spectral range 1500–450 cm−1 is more than twice the number of visible absorption maxima in the usual spectrum. The results of deconvolution of the IR spectrum of β-D glucose are in good agreement with the data of theoretical calculations for the frequencies of the normal vibrations of the β-D glucose molecule in the crystalline state. The existence of the factor-group (Davydov) splitting of a number of frequencies of the nondegenerate fundamental vibrations of molecules in a crystal cell has been revealed in the IR spectrum of β-D glucose. It was concluded that the model of an isolated molecule is insufficient for detailed theoretical interpretation of the vibrational spectra of carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. G. Zhbankov, Infrared Spectra and Structure of Carbohydrates[in Russian], Minsk (1972).

  2. M. Mathlothi and J. L. Koenig, Adv. Carbohydr. Chem. Biochem., 44, 7–89 (1986).

    Google Scholar 

  3. R. G. Zhbankov, J. Mol. Struct., 275, 65–84 (1992).

    Google Scholar 

  4. J. J. Caell, J. L. Koenig, and J. Blackwell, Carbohydr. Res., 32, 79–91 (1974).

    Google Scholar 

  5. M. Hineno, Carbohydr. Res., 56, 219–227 (1977).

    Google Scholar 

  6. J. P. Huvenne, G. Vergoten, G. Fleury, and P. Legrand, J. Mol. Struct., 74, 169–180 (1981).

    Google Scholar 

  7. H. A. Wells and R. H. Atalla, J. Mol. Struct., 224, 385–424 (1990).

    Google Scholar 

  8. M. V. Korolevich, J. Mol. Struct., 306, 261–268 (1994).

    Google Scholar 

  9. R. G. Zhbankov, V. M. Andrianov, Kh. Rataichak, and M. Markhevka, Zh. Strukt. Khim., 36, 322–329 (1995).

    Google Scholar 

  10. M. Dauchez, P. Derreumaux, and G. Vergoten, J. Comp. Chem., 14, 263–277 (1992).

    Google Scholar 

  11. J. E. Katon and D. B. Phillips, Appl. Spectrosc. Rev., 7, 1–45 (1973).

    Google Scholar 

  12. E. V. Korolik, N. V. Ivanova, V. V. Sivchik, R. G. Zhbankov, and N. I. Insarova, Zh. Prikl. Spektrosk., 34, 855–861 (1981).

    Google Scholar 

  13. A. Savitzky and M. J. E. Golay, Anal. Chem., 36, 1627–1639 (1964).

    Google Scholar 

  14. D. K. Buslov, R. G. Zhbankov, and L. V. Zabelin, Dokl. Akad. Nauk SSSR, 264, 348–351 (1982).

    Google Scholar 

  15. R. G. Zhbankov and D. K. Buslov, Zh. Prikl. Spektrosk., 38, 33–41 (1983).

    Google Scholar 

  16. J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch, and D. J. Cameron, Appl. Spectrosc., 35, 271–276 (1981).

    Google Scholar 

  17. J. K. Kauppinen, D. J. Moffatt, D. J. Cameron, and H. H. Mantsch, Appl. Opt., 30, 1866–1879 (1981).

    Google Scholar 

  18. D. K. Buslov and N. A. Nikonenko, Appl. Spectrosc., 51, 666–672 (1997).

    Google Scholar 

  19. D. K. Buslov and N. A. Nikonenko, Appl. Spectrosc., 52, 613–620 (1998).

    Google Scholar 

  20. S. S. C. Chu and G. A. Jefrey, Acta Crystallogr., 24B, 830–838 (1968).

    Google Scholar 

  21. P. C. Painter, M. M. Colemen, and J. S. Koenig, The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials[Russian translation], Moscow (1986).

  22. D. K. Buslov, N. A. Nikonenko, N. I. Sushko, and R. G. Zhbankov, Spectrochim. Acta, Pt. A, 55, 229–238 (1999).

    Google Scholar 

  23. D. K. Buslov, N. A. Nikonenko, N. I. Sushko, and R. G. Zhbankov, Spectrochim. Acta, Pt. A, 55, 1101–1108 (1999).

    Google Scholar 

  24. A. J. Michell, Carbohydr. Res., 173, 185–195 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buslov, D.K., Nikonenko, N.A., Sushko, N.I. et al. Analysis of the Structure of the Bands in the IR Spectrum of β-D Glucose by the Regularized Method of Deconvolution. Journal of Applied Spectroscopy 69, 817–824 (2002). https://doi.org/10.1023/A:1022446000732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022446000732

Navigation