Skip to main content
Log in

Modeling of Nucleotide Binding Domains of ABC Transporter Proteins Based on a F1-ATPase/recA Topology: Structural Model of the Nucleotide Binding Domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Members of the ABC transporter superfamily contain two nucleotide binding domains. To date, the three dimensional structure of no member of this super-family has been elucidated. To gain structural insight, the known structures of several other nucleotides binding proteins can be used as a framework for modeling these domains. We have modeled both nucleotide binding domains of the protein CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) using the two similar domains of mitochondrial F1-ATPase. The models obtained, provide useful insights into the putative functions of these domains and their possible interaction as well as a rationale for the basis of Cystic Fibrosis causing mutations. First, the two nucleotide binding domains (folds) of CFTR are each predicted to span a 240–250 amino acid sequence rather than the 150–160 amino acid sequence originally proposed. Second, the first nucleotide binding fold, is predicted to catalyze significant rates of ATP hydrolysis as a catalytic base (E504) resides near the γ phosphate of ATP. This prediction has been verified experimentally [Ko, Y.H., and Pedersen, P.L. (1995) J. Biol. Chem. 268, 24330-24338], providing support for the model. In contrast, the second nucleotide binding fold is predicted at best to be a weak ATPase as the glutamic acid residue is replaced with a glutamine. Third, F508, which when deleted causes ∼70% of all cases of cystic fibrosis, is predicted to lie in a cleft near the nucleotide binding pocket. All other disease causing mutations within the two nucleotide binding domains of CFTR either reside near the Walker A and Walker B consensus motifs in the heart of the nucleotide binding pocket, or in the C motif which lies outside but near the nucleotide binding pocket. Finally, the two nucleotide binding domains of CFTR are predicted to interact, and in one of the two predicted orientations, F508 resides near the interface.

This is the first report where both nucleotide binding domains of an ABC transporter and their putative domain-domain interactions have been modeled in three dimensions. The methods and the template used in this work can be used to analyze the structures and function of the nucleotide binding domains of all other members of the ABC transporter super-family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Annereau J.P., Wulbrand U., Vankeerberghen A., Cuppens H., Bontems F., Tummler B., Cassiman J.J. and Stoven V. (1997) FEBS Lett. 407, 303–308.

    Google Scholar 

  • Abrahams J.P., Leslie A.G.W., Lutter R. and Walker J.E. (1994) Nature 370, 621–628.

    Google Scholar 

  • Bianchet M.A., Hullihen J., Pedersen P.L. and Amzel L.M. (1998) In Review.

  • Bianchet M., Ko Y.H. and Pedersen P.L. (1995a) Ped. Pulmon. Suppl. 12, abstract 32.

  • Bianchet M.A., Ko Y.H., Amzel L.M., Pedersen P.L. (1995b) Biophysical J. 70(2):A214.

    Google Scholar 

  • Carson M.R., Travis S.M. and Welsh M.J. (1995a) J. Biol. Chem. 270(4):1711–1717.

    Google Scholar 

  • Carson M.R., Travis S.M. and Welsh M.J. (1995b) Biophysical J. 69, 2443–2448.

    Google Scholar 

  • Cheng S.H., Gregory R.J., Marshall J., Paul S., Souza D.W., White G.A., O'Riordan C.R. and Smith A.E. (1990) Cell 63, 827–829.

    Google Scholar 

  • Cheng S.H., Rich D.P., Marshall J., Gregory R.J., Welsh M.J., Smith A.E. (1991) Cell 66, 1027–1036.

    Google Scholar 

  • Chou P.Y. and Fasman G.D. (1978) Adv. Enzymol. 47, 45–148.

    Google Scholar 

  • Denning G.M., Ostergard L.S., Cheng S.H., Smith A.E. and Welsh M.J. (1992) J. Clin. Invest. 89, 339–349.

    Google Scholar 

  • Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., Crystal R.G., Pavirani A., Lecocq J.P. and Lazduski M. (1991) Nature 354, 526–528.

    Google Scholar 

  • Doige C.A. and Ames G.F-L. (1993) Annu. Rev. Microbiol. 47, 291–319.

    Google Scholar 

  • Evans S.V. (1993) J. Mol. Graphics 11, 134–138.

    Google Scholar 

  • Higgins C.F. (1992) Annu. Rev. Cell Biol. 267, 6455–6458.

    Google Scholar 

  • Hyde S.C., P. Emsley, M.J. Harsthorn, M.M. Mimmack, U. Gileadi, S.R. Pearce, R.E. Hubbard & C.F. Higgins. (1990) Nature 346, 362–365.

    Google Scholar 

  • Kerem E., Corey M., Kerem B.S., Rommens J., Manneweiz D., Kobayashi K., Knowles M.R., Boucher R.C., O'Brien W.E., Beaudet A.L. (1990) J. Hum. Genet. 110, 599–605.

    Google Scholar 

  • Ko Y.H. and Pedersen P.L. ( 1995) J. Biol. Chem. 268, 24330–24338.

    Google Scholar 

  • Ko Y.H., Thomas P.J. and Pedersen P.L. (1994) J. Biol Chem. 269, 14584–14588.

    Google Scholar 

  • Ko Y.H., Delannoy M. and Pedersen P.L. (1997) Biochem. 36, 5053–5064.

    Google Scholar 

  • Levison H., Tsui L.C., Durie P. (1990) N Engl. J. Med. 323, 1517–1522.

    Google Scholar 

  • Li C.H., Ramjeesingh Wang W., Garami E., Hewryk M., Lee D., Rommens J.M., Galley K., Bear C.E. (1996) J. Biol. Chem. 271, 28463–28468.

    Google Scholar 

  • Manavalan P., Dearborn D.G., McPherson J.M. and Smith A.E. (1995) FEBS Lett. 366, 87–91.

    Google Scholar 

  • Morikawa K., la Cour T.F., Nyborg J., Rasmussen K.M., Miller D.L., Clark B.F. (1978) J. Mol. Biol. 5;125, 325–338.

    Google Scholar 

  • Nicholls A., Sharp K. and Honig B. (1991) PROTEINS: Structure, Function and Genetics, 11, 281–296.

    Google Scholar 

  • Noel J.P., Hamm H.E., Sigler P.B. (1993) Nature, 366, 654–663.

    Google Scholar 

  • Pai E.F., Krengel U., Petsko G.A., Goody R.S., Kabsch W., Wittinghofer A. (1990) EMBO J., 9, 2351–2359.

    Google Scholar 

  • Pedersen P.L. and Amzel L.M. (1993) J. Biol. Chem. 268, 9937–9940.

    Google Scholar 

  • Qu B-H. and Thomas P. (1996) J. Biol. Chem. 271, 7261–7264.

    Google Scholar 

  • Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J., Drumm M.L., Iannuzzi C., Collins F.S. and Tsui L. (1989) Science 245, 1066–1073.

    Google Scholar 

  • Rich D.P., Anderson M.P., Gregory R.J., Cheng S.H., Paul S., Jefferson D.M., McCann J.D., Klinger K.W., Smith A. and Welsh M.J. (1991) Nature 347, 358–363.

    Google Scholar 

  • Rossmann M.G., Moras D. and Olsen K.W. (1974) Nature 250, 194–199.

    Google Scholar 

  • Rost B. (1996) Meth. in Enzym. 266, 525–539.

    Google Scholar 

  • Saraste M., Sibbald P.R. and Wittinghofer A. (1990) Trends in Biochem. Sci. 15, 430–434.

    Google Scholar 

  • Shirakihara Y., Leslie A., Abrahams J.P., Walker J., Ueda T., Sekimoto Y., Kambara M., Saiga K., Odaka M., Yoshida M. and Kagawa Y. (1997) Structure 5, 825–836.

    Google Scholar 

  • Story R.M., Weber I.T., Steitz T.A. (1992) Nature 355, 567.

    Google Scholar 

  • Schulz G.E., Elzinga M., Marx F., Schrimer R.H. (1974) Nature 250, 120–123.

    Google Scholar 

  • Taylor W.R. and Green N.M. (1989) FEBS 179, 241–248.

    Google Scholar 

  • Teem J.L., Berger L.S., Ostedgaard D.P., Rich D.P., Tsui L-C. and Welsh M.J. (1993) Cell 73, 335–346.

    Google Scholar 

  • Thomas P.J., Pedersen P.L. (1993) J. Bioener. & Biomem. 25:11–20.

    Google Scholar 

  • Tsui L-C. (1992) Trends of Genetics 8, 392–398.

    Google Scholar 

  • Walker J.E., Saraste M., Runswick M.J. and Gay N.J. (1982) EMBO J. 1, 945–951.

    Google Scholar 

  • Weber J. and Senior A.E. (1997) Biochem. Biophys. Acta 1319, 19–58.

    Google Scholar 

  • White S. (1994) Ed. S. White, Oxford University Press, New York, 97–124.

  • Yu X., Egelman E.H. (1997) Nat. Struct. Biol. 4, 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchet, M.A., Ko, Y.H., Amzel, L.M. et al. Modeling of Nucleotide Binding Domains of ABC Transporter Proteins Based on a F1-ATPase/recA Topology: Structural Model of the Nucleotide Binding Domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Bioenerg Biomembr 29, 503–524 (1997). https://doi.org/10.1023/A:1022443209010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022443209010

Navigation