Skip to main content
Log in

Initiation of DNA Replication in Cells of Higher Eukaryotes

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this review, the problems concerning initiation of DNA replication in higher eukaryotes are discussed, with special emphasis on the methods of replication origin mapping and biological tests for the activity of DNA replication origins in higher eukaryotes. Protein factors interacting with replication origins are considered in detail. The main events of replication initiation in higher eukaryotes are briefly analyzed. New data on the control of replication timing of large genomic regions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramhill, D. and Kornberg, A., A Model for Initiation at Origins of DNA Replication, Cell (Cambridge, Mass.), 1988, vol. 54, pp. 915-918.

    Google Scholar 

  2. Huberman, J.A. and Riggs, A.D., Autoradiography of Chromosomal DNA Fibers from Chinese Hamster Cells, Proc. Natl. Acad. Sci. USA, 1966, vol. 55, pp. 599-606.

    Google Scholar 

  3. Heintz, N.H. and Hamlin, J.L., An Amplified Chromosomal Sequence That Includes the Gene for Dihydrofolate Reductase Initiates Replication within Specific Restriction Fragments, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 4083-4087.

    Google Scholar 

  4. Heintz, N.H., Milbrandt, J.D., Greisen, K.S., and Hamlin, J.L., Cloning of the Initiation Region of a Mammalian Chromosomal Replicon, Nature, 1983, vol. 302, pp. 439-441.

    Google Scholar 

  5. Biamonti, G., Giacca, M., Perini, G., et al., The Gene for a Novel Human Lamin Maps at a Highly Transcribed Locus of Chromosome 19 Which Replicates at the Onset of S-Phase, Mol. Cell. Biol., 1992, vol. 12, pp. 3499-3506.

    Google Scholar 

  6. Gale, J.M., Tobey, R.A., and D'Anna, J.A., Localization and DNA Sequence of a Replication Origin in the Rhodopsin Gene Locus of Chinese Hamster Cells, J. Mol. Biol., 1992, vol. 224, pp. 343-358.

    Google Scholar 

  7. Burhans, W.C., Vassilev, L.T., Wu, J., et al., Emetine Allows Identification of Origins of Mammalian DNA Replication by Imbalanced DNA Synthesis, Not through Conservative Nucleosome Segregation, EMBO J., 1991, vol. 13, pp. 4351-4360.

    Google Scholar 

  8. Handeli, S., Klar, A., Meuth, M., and Cedar, H., Mapping Replication Units in Animal Cells, Cell (Cambridge, Mass.), 1989, vol. 57, pp. 909-920.

    Google Scholar 

  9. Burhans, W.C., Vassilev, L.T., Caddle, M.S., et al., Identification of an Origin of Bidirectional DNA Replication in Mammalian Chromosomes, Cell (Cambridge, Mass.), 1990, vol. 62, pp. 955-965.

    Google Scholar 

  10. Kitsberg, D., Selig, S., Keshet, I., and Cedar, H., Replication Structure of the Human β-Globin Gene Locus, Nature, 1993, vol. 366, pp. 588-590.

    Google Scholar 

  11. Verbovaia, L. and Razin, S.V., Analysis of the Replication Direction through the Domain of β-Globin-Encoding Genes, Gene, 1995, vol. 166, pp. 255-259.

    Google Scholar 

  12. Verbovaia, L.V. and Razin, S.V., Mapping of Replication Origins and Termination Sites in the Duchenne Muscular Dystrophy Gene, Genomics, 1997, vol. 45, pp. 24-30.

    Google Scholar 

  13. Svetlova, E.Y., Razin, S.V., and Debatisse, M., Mammalian Recombination Hot Spot and DNA Loop Anchorage Region: A Model for the Study of Common Fragile Sites, J. Cell. Biochem., 2001, vol. S36, pp. 170-178.

    Google Scholar 

  14. Vassilev, L. and Johnson, E.M., An Initiation Zone of Chromosomal DNA Replication Located Upstream of the c-myc Gene in Proliferating HeLa Cells, Mol. Cell. Biol., 1990, vol. 10, pp. 4899-4904.

    Google Scholar 

  15. Vassilev, L.T., Burhans, W.C., and DePamphilis, M.L., Mapping an Origin of DNA Replication at a Single-Copy Locus in Exponentially Proliferating Mammalian Cells, Mol. Cell. Biol., 1990, vol. 10, pp. 4685-4689.

    Google Scholar 

  16. Toledo, F., Baron, B., Fernandez, M.A., et al., oriGNAI3: A Narrow Zone of Preferential Replication Initiation in Mammalian Cells Identified by 2D Gel and Competitive PCR Replicon Mapping Techniques, Nucleic Acids Res., 1998, vol. 26, pp. 2313-2321.

    Google Scholar 

  17. Cohen, S.M., Brylawski, B.P., Cordeiro-Stone, M., and Kaufman, D.G., Mapping of an Origin of DNA Replication Near the Transcriptional Promoter of the Human HPRT Gene, J. Cell. Biochem., 2002, vol. 85, pp. 346-356.

    Google Scholar 

  18. Giacca, M., Zentilin, L., Norio, P., et al., Fine Mapping of a Replication Origin of Human DNA, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 7119-7123.

    Google Scholar 

  19. Pelizon, C., Diviacco, S., Falaschi, A., and Giacca, M., High-Resolution Mapping of the Origin of DNA Replication in the Hamster Dihydrofolate Reductase Gene Domain by Competitive PCR, Mol. Cell. Biol., 1996, vol. 16, pp. 5358-5364.

    Google Scholar 

  20. Abdurashidova, G., Deganuto, M., Klima, R., et al., Start Sites of Bidirectional DNA Synthesis at the Human Lamin B2 Origin, Science, 2000, vol. 287, pp. 2023-2026.

    Google Scholar 

  21. Brewer, B.J., Diller, J.D., Friedman, K.L., et al., The Topography of Chromosome Replication in Yeast, Cold Spring Harbor Symp. Quant. Biol., 1993, vol. 58, pp. 425-434.

    Google Scholar 

  22. Vaughn, J.P., Dijkwel, P.A., and Hamlin, J.L., Replication Initiates in a Broad Zone in the Amplified CHO Dihydrofolate Reductase Domain, Cell (Cambridge, Mass.), 1990, vol. 61, pp. 1075-1087.

    Google Scholar 

  23. Dijkwel, P.A., Vaughn, J.P., and Hamlin, J.L., Mapping of Replication Initiation Sites in Mammalian Genomes by Two-Dimensional Gel Analysis: Stabilization and Enrichment of Replication Intermediates by Isolation on the Nuclear Matrix, Mol. Cell. Biol., 1991, vol. 11, pp. 3850-3859.

    Google Scholar 

  24. Dijkwel, P.A. and Hamlin, J.L., Mapping Replication Origins by Neutral/Neutral Two-Dimensional Gel Electrophoresis, Methods, 1997, vol. 13, pp. 235-245.

    Google Scholar 

  25. Dijkwel, P.A., Mesner, L.D., Levenson, V.V., et al., Dispersive Initiation of Replication in the Chinese Hamster Rhodopsin Locus, Exp. Cell Res., 2000, vol. 256, pp. 150-157.

    Google Scholar 

  26. Dijkwel, P.A. and Hamlin, J.L., Sequence and Context Effects on Origin Function in Mammalian Cells, J. Cell Biochem., 1996, vol. 62, pp. 210-222.

    Google Scholar 

  27. DePamphilis, M.L., Replication Origins in Metazoan Chromosomes: Fact or Fiction?, BioEssays, 1999, vol. 21, pp. 5-16.

    Google Scholar 

  28. Dijkwel, P.A., Wang, S., and Hamlin, J.L., Initiation Sites Are Distributed at Frequent Intervals in the Chinese Hamster Dihydrofolate Reductase Origin of Replication but Are Used with Very Different Efficiencies, Mol. Cell. Biol., 2002, vol. 22, pp. 3053-3065.

    Google Scholar 

  29. Friedman, K.L., Brewer, B.J., and Fangman, W.L., Replication Profile of Saccharomyces cerevisiae Chromosome VI, Genes Cells, 1997, vol. 2, pp. 667-678.

    Google Scholar 

  30. Marahrens, Y. and Stillman, B., A Yeast Chromosomal Origin of DNA Replication Defined by Multiple Functional Elements, Science, 1992, vol. 255, pp. 817-823.

    Google Scholar 

  31. Newlon, C.S. and Theis, J.F., The Structure and Function of Yeast ARS Elements, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 752-758.

    Google Scholar 

  32. Van Houten, J.V. and Newlon, C.S., Mutational Analysis of the Consensus Sequence of a Replication Origin from Yeast Chromosome III, Mol. Cell. Biol., 1990, vol. 10, pp. 3917-3925.

    Google Scholar 

  33. Muller, W.J., Najuokas, M., and Hassel, J.A., The Isolation of Transformed Cell Lines Capable of Supporting the Replication of Polyomavirus-Plasmid Recombinants, Mol. Cell. Biol., 1984, vol. 4, pp. 2406-2412.

    Google Scholar 

  34. Johnson, E.M. and Jelinek, W.R., Replication of Plasmids Bearing a Human Alu-Family Repeat in Monkey COS-7 Cells, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 4660-4664.

    Google Scholar 

  35. Biamonti, G., Della Valle, G., Talariko, D., et al., Fate of Exogenous Recombinant Plasmids Introduced into Mouse and Human Cells, Nucleic Acids Res., 1988, vol. 16, pp. 5545-5561.

    Google Scholar 

  36. Krysan, P.J. and Calos, M.P., Replication Initiates at Multiple Locations on an Autonomously Replicating Plasmid in Human Cells, Mol. Cell. Biol., 1991, vol. 11, pp. 2263-2272.

    Google Scholar 

  37. Heinzel, S.S., Krysan, P.J., Tran, C.T., and Calos, M.P., Autonomous DNA Replication in Human Cells Is Affected by the Size and the Source of the DNA, Mol. Cell. Biol., 1991, vol. 11, pp. 2263-2272.

    Google Scholar 

  38. Masukata, H., Satoh, H., Obuse, C., and Okazaki, T., Autonomous Replication of Human Chromosomal DNA Fragments in Human Cells, Mol. Biol. Cell, 1993, vol. 4, pp. 1121-1132.

    Google Scholar 

  39. Krysan, P.J., Smith, J.G., and Calos, M.P., Autonomous Replication in Human Cells of Multimers of Specific Human and Bacterial DNA Sequences, Mol. Cell. Biol., 1993, vol. 13, pp. 2688-2696.

    Google Scholar 

  40. Smith, J.G. and Calos, M.P., Autonomous Replication in Drosophila melanogaster Tissue Culture Cells, Chromosoma, 1995, vol. 103, pp. 597-605.

    Google Scholar 

  41. Harland, R.M. and Laskey, R.A., Regulated Replication of DNA Microinjected into Eggs of Xenopus laevis, Cell (Cambridge, Mass.), 1980, vol. 21, pp. 761-771.

    Google Scholar 

  42. Méchali, M. and Kearsey, S., Lack of Specific Sequence Requirement for DNA Replication in Xenopus Eggs Compared with High Sequence Specificity in Yeast, Cell (Cambridge, Mass.), 1984, vol. 38, pp. 55-64.

    Google Scholar 

  43. Aladjem, M.I., Rodewald, L.W., Kolman, J.L., and Wahl, G.M., Genetic Dissection of a Mammalian Replicator in the Human β-Globin Locus, Science, 1998, vol. 281, pp. 1005-1009.

    Google Scholar 

  44. Malott, M. and Leffak, M., Activity of the c-myc Replicator at an Ectopic Chromosomal Location, Mol. Cell. Biol., 1999, vol. 19, pp. 5685-5695.

    Google Scholar 

  45. Altman, A.L. and Fanning, E., The Chinese Hamster Dihydrofolate Reductase Replication Origin Bell β Is Active at Multiple Ectopic Chromosomal Locations and Requires Specific DNA Sequence Elements for Activity, Mol. Cell. Biol., 2001, vol. 21, pp. 10 098-10 110.

    Google Scholar 

  46. Bell, S. and Stillman, B., ATP-Dependent Recognition of Eukaryotic Origins of DNA Replication by a Multiprotein Complex, Nature, 1992, vol. 357, pp. 128-134.

    Google Scholar 

  47. Diffley, J.F.X. and Cocker, J.H., Protein-DNA Interactions at a Yeast Replication Origin, Nature, 1992, vol. 357, pp. 169-172.

    Google Scholar 

  48. Lipford, J.R. and Bell, S.P., Nucleosomes Positioned by ORC Facilitate the Initiation of DNA Replication, Mol. Cell, 2001, vol. 7, pp. 21-30.

    Google Scholar 

  49. Moir, D. and Botstein, D., Determination of the Order of Gene Function in the Yeast Nuclear Division Pathway Using cs and ts Mutants, Genetics, 1982, vol. 100, pp. 565-577.

    Google Scholar 

  50. Maine, G.T., Sinha, P., and Tye, B.K., Mutants of Saccharomyces cerevisiae Defective in Maintenance of Minichromosomes, Genetics, 1984, vol. 106, pp. 365-385.

    Google Scholar 

  51. Sinha, P., Chang, V., and Tye, B.K., A Mutant That Affects the Function of Autonomously Replicating Sequences in Yeast, J. Mol. Biol., 1986, vol. 192, pp. 805-814.

    Google Scholar 

  52. Diffley, J.F.X., Cocker, J.H., Dowell, S.J., and Rowley, A., Two Steps in the Assembly of Complexes at Yeast Replication Origins in Vivo, Cell (Cambridge, Mass.), 1994, vol. 78, pp. 303-316.

    Google Scholar 

  53. Chong, J., Mahbubani, H.M., Khoo, C.Y., and Blow, J.J., Purification of an MCM-Containing Complex as a Component of the DNA Replication Licensing System, Nature, 1995, vol. 375, pp. 418-421.

    Google Scholar 

  54. Adachi, Y., Usukura, J., and Yanagida, M., A Globular Complex Formation by Nda1 and Other Five Members of the MCM Protein Family in Fission Yeast, Genes Cells, 1997, vol. 2, pp. 467-479.

    Google Scholar 

  55. Spradling, A., ORC Binding, Gene Amplification and the Nature of Metazoan Replication Origins, Genes Dev., 1999, vol. 13, pp. 2619-2623.

    Google Scholar 

  56. Tye, B.K., MCM Proteins in DNA Replication, Annu. Rev. Biochem., 1999, vol. 68, pp. 649-686.

    Google Scholar 

  57. Diffley, J.F., DNA Replication: Building the Perfect Switch, Curr. Biol., 2001, vol. 11, pp. R367-R370.

    Google Scholar 

  58. Kelly, T.J. and Brown, G.W., Regulation of Chromosome Replication, Annu. Rev. Biochem., 2000, vol. 69, pp. 829-880.

    Google Scholar 

  59. Chesnokov, I., Gossen, M., Remus, D., and Botchan, M., Assembly of Functionally Active Drosophila Origin Recognition Complex from Recombinant Proteins, Genes Dev., 1999, vol. 13, pp. 1289-1296.

    Google Scholar 

  60. Sanchez, M., Calzada, A., and Bueno, A., Functionally Homologous DNA Replication Genes in Fission and Budding Yeast, J. Cell. Sci., 1999, vol. 112, pp. 2381-2390.

    Google Scholar 

  61. Okuno, Y., Satoh, H., Sekigushi, M., and Masukata, H., Clustered Adenine/Thymine Stretches Are Essential for Function of a Fission Yeast Replication Origin, Mol. Cell. Biol., 1999, vol. 19, pp. 6699-6709.

    Google Scholar 

  62. Natale, D.A., Li, C.-J., Sun, W.-H., and DePamphilis, M.L., Selective Instability of Orc1 Protein Accounts for the Absence of Functional Origin Recognition Complexes during the M-G1 Transition in Mammals, EMBO J., 2000, vol. 19, pp. 2728-2738.

    Google Scholar 

  63. Ritzi, M., Baack, M., Musahl, C., et al., Human Minichromosome Maintenance Proteins and Human Origin Recognition Complex 2 Protein on Chromatin, J. Biol. Chem., 1998, vol. 273, pp. 24 543-24 549.

    Google Scholar 

  64. Kreitz, S., Ritzi, M., Baack, M., and Knippers, R., The Human Origin Recognition Complex Protein 1 Dissociates from Chromatin during S Phase in HeLa Cells, J. Biol. Chem., 2001, vol. 276, pp. 6337-6342.

    Google Scholar 

  65. Sun, W.H., Coleman, T.R., and DePamphilis, M.L., Cell Cycle-Dependent Regulation of the Association between Origin Recognition Proteins and Somatic Cell Chromatin, EMBO J., 2002, vol. 21, pp. 1437-1446.

    Google Scholar 

  66. Li, C.J. and DePamphilis, M.L., Mammalian Orc1 Protein Is Selectively Released from Chromatin and Ubiquitinated during the S-to-M Transition in the Cell Division Cycle, Mol. Cell. Biol., 2002, vol. 22, pp. 105-116.

    Google Scholar 

  67. Abdurashidova, G., Riva, S., Biamonti, G., et al., Cell Cycle Modulation of Protein-DNA Interactions at a Human Replication Origin, EMBO J., 1998, vol. 17, pp. 2961-2969.

    Google Scholar 

  68. Rowles, A., Tada, S., and Blow, J.J., Changes in Association of the Xenopus Origin Recognition Complex with Chromatin on Licensing of Replication Origins, J. Cell. Sci., 1999, vol. 112, pp. 2011-2018.

    Google Scholar 

  69. Diffley, J.F., Once and Only Once upon a Time: Specifying and Regulating Origins of DNA Replication in Eukaryotic Cells, Genes Dev., 1996, vol. 10, pp. 2819-2830.

    Google Scholar 

  70. Lygerou, Z. and Nurse, P., The Fission Yeast Origin Recognition Complex Is Constitutively Associated with Chromatin and Is Differentially Modified through the Cell Cycle, J. Cell. Sci., 1999, vol. 112, pp. 3703-3712.

    Google Scholar 

  71. Ladenburger, E.M., Keller, C., and Knippers, R., Identification of a Binding Region for Human Origin Recognition Complex Proteins 1 and 2 That Coincides with an Origin of DNA Replication, Mol. Cell. Biol., 2002, vol. 22, pp. 1036-1048.

    Google Scholar 

  72. Coverley, D. and Laskey, R.A., Regulation of Eukaryotic DNA Replication, Annu. Rev. Biochem., 1994, vol. 63, pp. 745-776.

    Google Scholar 

  73. Zacharie, W. and Nasmyth, K., Whose End Is Destruction: Cell Division and the Anaphase-Promoting Complex, Genes Dev., 1999, vol. 13, pp. 2039-2058.

    Google Scholar 

  74. McGarry, T.J. and Kirschner, M.W., Geminnin, an Inhibitor of DNA Replication Is Degraded during Mitosis, Cell (Cambridge, Mass.), 1998, vol. 93, pp. 1043-1053.

    Google Scholar 

  75. Stoeber, K., Mills, A.D., Kubota, Y., et al., Cdc6 Protein Causes Premature Entry into S Phase in a Mammalian Cell-Free System, EMBO J., 1998, vol. 17, pp. 7219-7229.

    Google Scholar 

  76. Donaldson, A.D. and Blow, J.J., The Regulation of Replication Origin Activation, Curr. Opin. Genet. Dev., 1999, vol. 9, pp. 62-68.

    Google Scholar 

  77. Blow, J.J. and Tada, S., A New Check on Issuing the License, Nature, 2000, vol. 404, pp. 560-561.

    Google Scholar 

  78. Maiorano, D., Moreau, J., and Mechali, M., XCDT1 Is Required for the Assembly of Pre-Replicative Complexes in Xenopus laevis, Nature, 2000, vol. 404, pp. 622-625.

    Google Scholar 

  79. Whittaker, A.J., Royzman, I., and Orr-Weaver, T.L., Drosophila Double Parked: A Conserved, Essential Replication Protein That Colocalizes with the Origin Recognition Complex and Links DNA Replication with Mitosis and the Down-Regulation of S Phase Transcripts, Genes Dev., 2000, vol. 14, pp. 1765-1776.

    Google Scholar 

  80. Cook, J.G., Park, C.H., Burke, T.W., et al., Analysis of Cdc6 Function in the Assembly of Mammalian Prereplication Complexes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 1347-1352.

    Google Scholar 

  81. Homesley, L., Lei, M., Kawasaki, Y., et al., MCM10 and the MCM2-7 Complex Interact to Initiate DNA Synthesis and to Release Replication Factors from Origins, Genes Dev., 2000, vol. 14, pp. 913-926.

    Google Scholar 

  82. Kawasaki, Y., Hiraga, S., and Sugino, A., Interactions between Mcm10p and Other Replication Factors Are Required for Proper Initiation and Elongation of Chromosomal, DNA Replication in Saccharomyces cerevisiae, Genes Cells, 2000, vol. 5, pp. 975-989.

    Google Scholar 

  83. Ishimi, Y.A., A DNA Helicase Activity Is Associated with an MCM4,-6, and-7 Protein Complex, J. Biol. Chem., 1997, vol. 272, pp. 24 508-24 513.

    Google Scholar 

  84. You, Z., Komamura, Y., and Ishimi, Y., Biochemical Analysis of the Intrinsic Mem4-Mcm6-Mcm7 DNA Helicase Activity, Mol. Cell. Biol., 1999, vol. 19, pp. 8003-8015.

    Google Scholar 

  85. Tye, B.K. and Sawyer, S., The Hexameric Eukaryotic MCM Helicase: Building Symmetry from Nonidentical Parts, J. Biol. Chem., 2000, vol. 275, pp. 34 833-34 836.

    Google Scholar 

  86. Chong, J., Hayashi, M.K., Simon, M.N., et al., A Double Hexamer Arhaeal Minichromosome Maintenance Protein Is an ATP-Dependent DNA Helicase, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1530-1535.

    Google Scholar 

  87. Labib, K., Tercero, J.A., and Diffley, J.F.X., Uninterrupted MCM2-7 Function Required for DNA Replication Fork Progression, Science, 2000, vol. 288, pp. 1643-1647.

    Google Scholar 

  88. Alexandrow, M.G., Ritzi, M., Pemov, A., and Hamlin, J.L., A Potential Role for Mini-Chromosome Maintenance (MCM) Proteins in Initiation at the Dihydrofolate Reductase Replication Origin, J. Biol. Chem., 2002, vol. 277, pp. 2702-2708.

    Google Scholar 

  89. Nasmyth, K., Control of the Yeast Cell Cycle by the Cdc28 Protein Kinase, Curr. Opin. Cell. Biol., 1993, vol. 5, pp. 166-179.

    Google Scholar 

  90. Jackson, A.L., Pahl, P.M.B., Harrison, K., et al., Cell Cycle Regulation of the Yeast Cdc7 Protein Kinase by Association with the Dbf4 Protein, Mol. Cell. Biol., 1993, vol. 13, pp. 2899-2908.

    Google Scholar 

  91. Yoon, H.J., Loo, S., and Campbell, J.L., Regulation of Saccharomyces cerevisiae CDC7 Function during the Cell Cycle, Mol. Biol. Cell, 1993, vol. 4, pp. 195-208.

    Google Scholar 

  92. Jiang, W., McDonald, D., Hope, T.J., and Hunter, T., Mammalian Cdc7-Dbf4 Complex Is Essential for Initiation of DNA Replication, EMBO J., 1999, vol. 18, pp. 5703-5713.

    Google Scholar 

  93. Johnson, L.H., Masai, H., and Sugino, A., First the CDKs, Now the DDKs, Trends Cell. Biol., 1999, vol. 9, pp. 249-252.

    Google Scholar 

  94. Bousset, K. and Diffley, J.F.X., The Cdc7 Protein Kinase Is Required for Origin Firing during S Phase, Genes Dev., 1998, vol. 12, pp. 480-490.

    Google Scholar 

  95. Tanaka, T. and Nasmyth, K., Association of RPA with Chromosomal Replication Origins Requires an Mcm Protein and Is Regulated by Rad53, and Cyclin-and Dbf4-Dependent Kinases, EMBO J., 1998, vol. 17, pp. 5182-5191.

    Google Scholar 

  96. Weinreich, M. and Stillman, B., Cdc7p-Dbf4p Kinase Binds to Chromatin during S Phase and Is Regulated by Both the APS and the RAD53 Checkpoint Pathway, EMBO J., 1999, vol. 18, pp. 5334-5346.

    Google Scholar 

  97. Nougarede, R., Della Seta, F., Zarzov, P., and Schwob, E., Hierarchy of S-Phase Promoting Factors: Yeast Dbf4- Cdc7 Kinase Requires Prior S-Phase Cyclin-Dependent Kinase Activation, Mol. Cell. Biol., 2000, vol. 20, pp. 3795-3806.

    Google Scholar 

  98. Zou, L. and Stillman, B., Formation of a Preinitiation Complex by S-Phase CDK-Dependent Loading of Cdc45p Onto Chromatin, Science, 1998, vol. 280, pp. 593-596.

    Google Scholar 

  99. Aparicio, O.M., Stout, A.M., and Bell, S.P., Differential Assembly of Cdc45p and DNA Polymerases at Early and Late Origins of DNA Replication, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 9130-9135.

    Google Scholar 

  100. Zou, L. and Stillman, B., Assembly of a Complex Containing Cdc45p, Replication Protein A, and Mcm2p at Replication Origins Controlled by S-Phase Cyclin-Dependent Kinases and Cdc7p-Dbf4p Kinase, Mol. Cell. Biol., 2000, vol. 20, pp. 3086-3096.

    Google Scholar 

  101. Holmquist, G.P., Role of Replication Time in the Control of Tissue-Specific Gene Expression, Am. J. Hum. Genet., 1987, vol. 40, pp. 151-173.

    Google Scholar 

  102. Hatton, K.S., Dhar, V., Brown, E.H., et al., Replication Program of Active and Inactive Multigene Families in Mammalian Cells, Mol. Cell. Biol., 1988, vol. 8, pp. 2149-2158.

    Google Scholar 

  103. Herbomel, P., From Gene to Chromosome: Organization Levels Defined by the Interplay of Transcription and Replication in Vertebrates, New Biol., 1990, vol. 2, pp. 937-945.

    Google Scholar 

  104. Selig, S., Okumura, K., Ward, D.C., and Cedar, H., Delineation of DNA Replication Time Zones by Fluorescence In Situ Hybridization, EMBO J., 1992, vol. 11, pp. 1217-1225.

    Google Scholar 

  105. Dhar, V., Nandi, A., Schildkraut, C.L., and Skoultchi, A.I., Erythroid-Specific Nuclease-Hypersensitive Sites Flanking the Human β-Globin Domain, Mol. Cell. Biol., 1990, vol. 10, pp. 4324-4333.

    Google Scholar 

  106. Gunaratne, P.H., Nakao, M., Ledbetter, D.H., et al., Tissue-Specific and Allele-Specific Replication Timing Control in the Imprinted Human Prader-Willi Syndrome Region, Genes Dev., 1995, vol. 9, pp. 808-820.

    Google Scholar 

  107. Simon, I., Tenzen, T., Mostoslavsky, R., et al., Developmental Regulation of DNA Replication Timing at the Human β-Globin Locus, EMBO J., 2001, vol. 20, pp. 6150-6157.

    Google Scholar 

  108. Strehl, S., LaSalle, J.M., and Lalande, M., High-Resolution Analysis of DNA Replication Domain Organization across an R/G-Band Boundary, Mol. Cell. Biol., 1997, vol. 17, pp. 6157-6166.

    Google Scholar 

  109. Phi-van, L., Sellke, C., von Bodenhausen, A., and Stratling, W.H., An Initiation Zone of Chromosomal DNA Replication at the Chicken Lysozyme Gene Locus, J. Biol. Chem., 1998, vol. 273, pp. 18 300-18 307.

    Google Scholar 

  110. Greally, J.M., Starr, D.J., Hwang, S., et al., The Mouse H19 Locus Mediates a Transition between Imprinted and Non-Imprinted DNA Replication Patterns, Hum. Mol. Genet., 1998, vol. 7, pp. 91-95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razin, S.V. Initiation of DNA Replication in Cells of Higher Eukaryotes. Russian Journal of Genetics 39, 120–127 (2003). https://doi.org/10.1023/A:1022415406010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022415406010

Keywords

Navigation