Skip to main content
Log in

Improved Epstein–Glaser Renormalization in Coordinate Space I. Euclidean Framework

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In a series of papers, we investigate the reformulation of Epstein–Glaser renormalization in coordinate space, both in analytic and (Hopf) algebraic terms. This first article deals with analytical aspects. Some of the (historically good) reasons for the divorces of the Epstein–Glaser method, both from mainstream quantum field theory and the mathematical literature on distributions, are made plain; and overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gracia-Bondía, J. M. and Lazzarini, S.: Improved Epstein-Glaser renormalization in coordinate space II. Lorentz invariant framework, in preparation.

  2. Gracia-Bondía, J. M.: Improved Epstein-Glaser renormalization in coordinate space III. The Hopf algebra of Feynman graphs, in preparation.

  3. Kreimer, D.: Adv. Theor. Math. Phys. 2 (1998), 303.

    Google Scholar 

  4. Connes, A. and Kreimer, D.: Comm. Math. Phys. 210 (2000), 249.

    Google Scholar 

  5. Connes, A. and Kreimer, D.: Comm. Math. Phys. 216 (2001), 215.

    Google Scholar 

  6. 't Hooft, G. and Veltman, M.: Nuclear Phys. B 44 (1972), 189.

    Google Scholar 

  7. Bollini, C. G. and Giambiagi, J. J.: Nuovo Cimento B 12 (1972), 20.

    Google Scholar 

  8. Epstein, H. and Glaser, V.: Ann. Inst. Henri Poincaré A 19 (1973), 211.

    Google Scholar 

  9. Veltman, M.: Diagrammatica, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  10. Collins, J. C.: Renormalization, Cambridge Univ. Press, Cambridge, 1984.

    Google Scholar 

  11. Dosch, H. G. and Müller, V. F.: Fortschr. Phys. 23 (1975), 661.

    Google Scholar 

  12. Bellissard, J.: Comm. Math. Phys. 41 (1975), 235.

    Google Scholar 

  13. Gracia-Bondía, J. M.: Phys. Lett. B 482 (2000), 315.

    Google Scholar 

  14. Brunetti, R. and Fredenhagen, K.: Comm. Math. Phys. 208 (2000), 623.

    Google Scholar 

  15. Itzykson, C. and Zuber, J.-B.: Quantum Field Theory, McGraw-Hill, New York, 1980.

    Google Scholar 

  16. Stora, R.: Lagrangian field theory, In: C. DeWitt-Morette and C. Itzykson (eds), Proc. Les Houches School, Gordon and Breach, New York, 1973.

    Google Scholar 

  17. Popineau, G. and Stora, R.: A pedagogical remark on the main theorem of perturbative renormalization theory, Unpublished preprint, CPT & LAPP-TH (1982).

  18. Stora, R.: A note on elliptic perturbative renormalization on a compact manifold, Unpublished undated preprint, LAPP-TH.

  19. Pinter, G.: Ann. Phys. 8 10 (2001), 333.

    Google Scholar 

  20. Pinter, G.: Epstein-Glaser renormalization: finite renormalizations, the \({\mathbb{S}}\)-matrix of Φ4 theory and the action principle, Doktorarbeit, DESY, 2000.

  21. Gracia-Bondía, J. M. and Lazzarini, S.: Connes-Kreimer-Epstein-Glaser renormalization, hep-th/0006106.

  22. Güttinger, W.: Phys. Rev. 89 (1953), 1004.

    Google Scholar 

  23. Bogoliubov, N. N. and Parasiuk, O. S.: Acta Math. 97 (1957), 227.

    Google Scholar 

  24. Freedman, D. Z., Johnson, K. and Latorre, J. I.: Nuclear Phys. B 371 (1992), 353.

    Google Scholar 

  25. Schnetz, O.: J. Math. Phys. 38 (1997), 738.

    Google Scholar 

  26. Estrada, R., Gracia-Bondía, J. M. and Várilly, J. C.: Comm. Math. Phys. 191 (1998), 219.

    Google Scholar 

  27. Estrada, R.: Proc. Roy. Soc. London A 454 (1998), 2425.

    Google Scholar 

  28. Estrada, R. and Kanwal, R. P.: A Distributional Approach to Asymptotics, Theory and Applications (2nd edn), Birkhäuser, Boston, 2002.

    Google Scholar 

  29. Prange, D.: J. Phys. A 32 (1999), 2225.

    Google Scholar 

  30. Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory, Lecture Notes in Phys. 11, Springer, Berlin, 1971.

    Google Scholar 

  31. Estrada, R.: Internat. J. Math. and Math. Sci. 21 (1998), 625.

    Google Scholar 

  32. Gracia-Bondía, J. M., Várilly, J. C. and Figueroa, H.: Elements of Noncommutative Geometry, Birkhäuser, Boston, 2001.

    Google Scholar 

  33. Smirnov, V. A. and Zavialov, O. I.: Theoret. and Math. Phys. 96 (1993), 974.

    Google Scholar 

  34. Gelfand, I. M. and Shilov, G. E.: Generalized Functions I, Academic Press, New York, 1964.

    Google Scholar 

  35. Kuznetsov, A. N., Tkachov, F. V. and Vlasov, V. V.: Techniques of distributions in perturbative quantum field theory I, hep-th/9612037, Moscow, 1996.

  36. Grigore, D. R.: Ann. Phys. (Leipzig) 10 (2001), 473.

    Google Scholar 

  37. Kreimer, D.: Knots and Feynman Diagrams, Cambridge Univ. Press, Cambridge, 2000.

    Google Scholar 

  38. Andrews, G. E., Askey, R. and Roy, R.: Special Functions, Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  39. Chetyrkin, K. G., Kataev, A. L. and Tkachov, F. V.: Nuclear Phys. B 174 (1980), 345.

    Google Scholar 

  40. Blanchard, Ph. and Brüning, E.: Generalized Functions, Hilbert Spaces and Variational Methods, Birkhäuser, Basel, 2002.

    Google Scholar 

  41. Hörmander, L.: The Analysis of Partial Differential Operators I, Springer, Berlin, 1983.

    Google Scholar 

  42. Graham, R. L., Knuth, D. E. and Patashnik, O.: Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  43. Estrada, R. and Kanwal, R. P.: Proc. Roy. Soc. London A 401 (1985), 281.

    Google Scholar 

  44. Estrada, R. and Kanwal, R. P.: J. Math. Anal. Appl. 141 (1989), 195.

    Google Scholar 

  45. Blanchet, L. and Faye, G.: gr-qc/0004008, Meudon, 2000.

  46. Scharf, G.: Finite Quantum Electrodynamics: the Causal Approach, Springer, Berlin, 1995.

    Google Scholar 

  47. Kreimer, D.: Talks at Abdus Salam ICTP, Trieste, March 27, 2001 and Mathematical Sciences Research Institute, Berkeley, April 25, 2001.

  48. Gross, D. J.: Applications of the renormalization group to high-energy physics, In: R. Balian and J. Zinn-Justin (eds), Proc. Les Houches School, North-Holland, Amsterdam, 1976.

    Google Scholar 

  49. del Aguila, F. and Pérez-Victoria, M.: Acta Phys. Polon. B 28 (1997), 2279.

    Google Scholar 

  50. Smirnov, V. A.: Nuclear Phys. B 427 (1994), 325.

    Google Scholar 

  51. Dunne, G. V. and Rius, N.: Phys. Lett. B 293 (1992), 367.

    Google Scholar 

  52. Gracia-Bondía, J. M.: Modern Phys. Lett. A 16 (2001), 281.

    Google Scholar 

  53. Lowenstein, J. H. and Zimmermann, W.: Nuclear Phys. B 86 (1975), 77.

    Google Scholar 

  54. Zavialov, O. I.: Theoret. and Math. Phys. 98 (1994), 377.

    Google Scholar 

  55. Smirnov, V. A.: Theoret. and Math. Phys. 108 (1997), 953.

    Google Scholar 

  56. Haagensen, P. E. and Latorre, J. L.: Phys. Lett. B 283 (1992), 293.

    Google Scholar 

  57. Hollands, S. and Wald, R. M.: gr-qc/0111108, Chicago, 2001; Comm. Math. Phys., in press.

  58. Hollands, S. and Wald, R. M.: gr-qc/0209029, Chicago, 2002.

  59. Brunetti, R., Fredenhagen, K. and Verch, R.: math-ph/0112041, Hamburg, 2001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracia-Bondía, J.M. Improved Epstein–Glaser Renormalization in Coordinate Space I. Euclidean Framework. Mathematical Physics, Analysis and Geometry 6, 59–88 (2003). https://doi.org/10.1023/A:1022414224858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022414224858

Navigation