Skip to main content
Log in

Dynamical Characteristics of Traveling Wave Packets of Total Electron Content Disturbances

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Using the COPHASE method and the GPS interferometry method for travelling ionospheric disturbances, we analyze in detail the spatio-temporal properties of travelling wave packets (TWP) of total electron content (TEC) disturbances. The analysis is performed on the example of a clearest TWP manifestation observed in California, USA, in October 18, 2001, using the GLOBDET technique, developed at the Institute of Solar-Terrestrial Physics of the Siberian Branch of RAS for global detection and monitoring of natural and technogenic ionospheric disturbances on the basis of TEC variations retrieved from the global network of GPS receivers. In the time domain, TWPs are quasi-periodic TEC oscillations of duration about 1 h, period of 10–20 min, and amplitude exceeding that of the background TEC fluctuations by at least one order of magnitude. The velocity and direction of TWP motion are similar to those of mid-latitude mesoscale travelling ionospheric disturbances, as obtained earlier from the analysis of phase parameters of HF radio signals and the signals of geostationary satellites and discrete space radio sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. S. Posmentier and R. W. Herrman, J. Geophys. Res., 76, 2194 (1971).

    Google Scholar 

  2. E. L. Afraimovich, K. S. Palamartchouk, and N. P. Perevalova, J. Atmos. Sol.-Terr. Phys., 60, 1205 (1998).

    Google Scholar 

  3. E. L. Afraimovich, K. S. Palamartchouk, and N. P. Perevalova, Adv. Space Res., 26, No. 6, 1001 (2000).

    Google Scholar 

  4. C. O. Hines, Can. J. Phys., 38, 1441 (1960).

    Google Scholar 

  5. C. O. Hines and C. A. Reddy, J. Geophys. Res., 72, 1015 (1967).

    Google Scholar 

  6. K. Hocke and K. Schlegel, Ann. Geophys., 14, 917 (1996).

    Google Scholar 

  7. W. L. Oliver, Y. Otsuka, M. Sato, T. Takami, and S. Fukao, J. Geophys. Res., 102, 14449 (1997).

    Google Scholar 

  8. K. Davies and J. E. Jones, J. Atmos. Terr. Phys., 33, 39 (1971).

    Google Scholar 

  9. J. A. Waldock and T. B. Jones, J. Atmos. Terr. Phys., 49, 195 (1987).

    Google Scholar 

  10. A. R. Jacobson and R. C. Carlos, J. Atmos. Terr. Phys., 53, 53 (1991).

    Google Scholar 

  11. A. F. Yakovets, M. Z. Kaliev, and V. V. Vodyannikov, J. Atmos. Terr. Phys., 61, 629 (1999).

    Google Scholar 

  12. E. L. Afraimovich, S. V. Voyeikov, and Yu. V. Lipko, In: Proc. XXth All-Russian Conf. on Radiowave Propagation, Nizhny Novgorod (2002), p. 86.

  13. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, Springer-Verlag, Wien, New York (1992).

    Google Scholar 

  14. J. A. Klobuchar, IEEE Trans. Aerospace and Electronics Systems, 23, No. 3, 325 (1986).

    Google Scholar 

  15. E. L. Afraimovich, E. A. Kosogorov, O. S. Lesyuta, and I. I. Ushakov, Radiophys. Quantum Electron., 44, No. 10, 763 (2001).

    Google Scholar 

  16. Mercier C., J. Atmos. Terr. Phys., 48, 605 (1986).

    Google Scholar 

  17. C. Mercier, Ann. Geophys., 14, 42 (1996).

    Google Scholar 

  18. E. L. Afraimovich, Acta Geod. Geophys. Hung., 32, Nos. 3-4, 461 (1997).

    Google Scholar 

  19. E. L. Afraimovich, O. N. Boitman, E. I. Zhovtyi, A. D. Kalikhman, and T. G. Pirog, Geomagn. Aéron., 37, No. 4, 86 (1997).

    Google Scholar 

  20. E. L. Afraimovich, A. I. Terekhov, M. Yu. Udodov, and S. V. Fridman, J. Atmos. Terr. Phys., 54, 1013 (1992).

    Google Scholar 

  21. J. A. Waldock and T. B. Jones, J. Atmos. Terr. Phys., 46, 217 (1984).

    Google Scholar 

  22. S. H. Francis, J. Geophys. Res., 79, 5245 (1974).

    Google Scholar 

  23. H. A. Montes and E. S. Posmentier, Geophys. J. R. Astr. Soc., 26, 271 (1971).

    Google Scholar 

  24. V. M. Aushev, A. I. Pogoreltsev, V. V. Vodyannikov, R. H. Wiens, and G. G. Shepherd, Phys. Chem. Earth B, 25, 409 (2000).

    Google Scholar 

  25. C. L. Waters, F. W. Menk, B. J. Fraser, and P. M. Ostwald, Planet. Space Sci., 39, 569 (1991).

    Google Scholar 

  26. A. F. Yakovets, V. I. Drobjev, and Yu. G. Litvinov, J. Atmos. Terr. Phys., 57, 25 (1995).

    Google Scholar 

  27. A. D. Kalikhman, J. Atmos. Sol.-Terr. Phys., 42, 697 (1980).

    Google Scholar 

  28. E. L. Afraimovich, Interference Methods for Radio Sounding of the Ionosphere [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  29. J. A. Waldock and T. B, Jones, J. Atmos. Sol.-Terr. Phys., 48, 245 (1986).

    Google Scholar 

  30. T. A. Th. Spoelstra, J. Atmos. Terr. Phys., 54, 1185 (1992).

    Google Scholar 

  31. A. R. Jacobson, R. C. Carlos, R. S. Massey, and G. Wu, J. Geophys. Res., 100, 1653 (1995).

    Google Scholar 

  32. P. F. J. Velthoven, C. Mercier, and H. Kelder, J. Atmos. Terr. Phys., 52, 305 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afraimovich, É.L., Vodyannikov, V.V., Voyeikov, S.V. et al. Dynamical Characteristics of Traveling Wave Packets of Total Electron Content Disturbances. Radiophysics and Quantum Electronics 45, 741–757 (2002). https://doi.org/10.1023/A:1022402116082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022402116082

Keywords

Navigation