Skip to main content
Log in

Larval Beetles Form a Defense from Recycled Host-Plant Chemicals Discharged as Fecal Wastes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of the leaf-feeding beetles Neolema sexpunctata and Lema trilinea carry feces on their backs that form shields. We used the generalist predatory ant, Formica subsericea, in a bioassay to determine whether shields were a physical barrier or functioned as a chemical defense. Fecal shields protected both species against ant attack. Larvae of both species reared on lettuce produced fecal shields that failed to deter ants. Commelina communis, N. sexpunctata's host, lacks noxious secondary compounds but is rich in phytol and fatty acids, metabolites of which become incorporated into the fecal defense. In contrast, the host plant of L. trilinea, Solanum dulcamara, contains steroidal glycoalkaloids and saponins, whose partially deglycosylated metabolites, together with fatty acids, appear in Lema feces. Both beetle species make modifications to host-derived precursors before incorporating the metabolites into shields. Synthetic chemicals identified as shield metabolites were deterrent when applied to baits. This study provides experimental evidence that herbivorous beetles form a chemical defense by the elimination of both primary and secondary host-derived compounds. The use of host-derived compounds in waste-based defenses may be a more widely employed strategy than was hitherto recognized, especially in instances where host plants lack elaborate secondary compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albini, F. M., Murelli, C., Patritti, G., Rovati, M., Zienna, P., and Finzi, P. V. 1994. Lowmolecular weight substances from the resurrection plant, Sporobolus stapfianus. Phytochemistry 37(1):137–142.

    Google Scholar 

  • Anderson, P. M., Hilker, M., Hansson, B. S., Bombosch, S., Klein, B., and Schildknecht, H. 1993. Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): A behavioral and electrophysiological evaluation. J. Insect Physiol. 39:129–137.

    Google Scholar 

  • Aoki, T., Takagi, K., Hirata, T., and Suga, T. 1982. Two naturally occurring acyclic diterpene and norditerpene aldehydes from Tetragonia tetragonoides. Phytochemistry 21:1361–1363.

    Google Scholar 

  • Appelbaum, S. W., and Birk, Y. 1979. Saponins, pp. 539–566, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores—Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Berenbaum, M. R. 1995. Turnabout is fair play: Secondary roles for primary compounds. J. Chem. Ecol. 21:925–940.

    Google Scholar 

  • Bernays, E. A., and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.

    Google Scholar 

  • Bethune, C. J. S. 1909. Insects affecting vegetables. Ontario Dept. Agric. Bull. 171:32–33.

    Google Scholar 

  • Blum, M. S. 1970. The chemical basis of insect sociality, pp. 61–93, in M. Beroza (ed.). Chemicals Controlling Insect Behavior. Academic Press, New York.

    Google Scholar 

  • Blum, M. S. 1994. Antipredator devices in larvae of the Chrysomelidae: A unified synthesis for defensive eclecticism, pp. 277–288, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of the Chrysomelidae Kluwer Academic Publishers, Dordrecht, The Netherlands.

  • Blum, M. S., Whitman, D. W., Severson, R. F., and Arrendale, R. F. 1987. Herbivores and toxic plants: Evolution of a menu of options for processing allelochemicals. Insect Sci. Appl. 8:459–463.

    Google Scholar 

  • Brown, G. D. 1994. Phytene-1,2-diol from Artemesia annua. Phytochemistry 36(6):1553–1554.

    Google Scholar 

  • Brown, K. S. 1987. Chemistry at the Solanaceae/Ithomiinae interface. Ann. Mo. Bot. Gard. 74:359–397.

    Google Scholar 

  • Cornelius, M. L., and Bernays, E. A. 1995. The effect of plant chemistry on the acceptability of caterpillar prey to the Argentine ant Iridomyrmex humilis (Hymenoptera: Formicidae). J. Insect Behav. 8:579–593.

    Google Scholar 

  • Cox, M. L. 1996. Insect predators of the Chrysomelidae, pp. 23–91. in P. H. A. Jolivet, and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2, Ecological Studies. SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Deroe, C., and Pasteels, J. M. 1977. Defensive mechanisms against predation in the Colorado potato beetle (Leptinotarsa decemlineata Say). Arch. Biol. 88:289–304.

    Google Scholar 

  • Dani, F. R., Cannoni, S., Turrillazzi, S., and Morgan, E. D. 1996. Ant repellent effect of the sternal gland secretion of Polistes dominulus (Christ) and P. sulcifer (Zimmermann). (Hymenoptera: Vespidae). J. Chem. Ecol. 22:37–48.

    Google Scholar 

  • Dickinson, J. L. 1996. The behavior and ecology of Labidomera Chevrolet (Chrysomelidae: Chrysomelinae), pp. 323–335, in P. H. A. Jolivet, and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2, Ecological Studies. SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Duffy, S. S. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25:447–477.

    Google Scholar 

  • Dyer, L. A., and Floyd, T. 1993. Determinants of predation on phytophagous insects: The importance of diet breadth. Oecologia 96:575–582.

    Google Scholar 

  • Eisner, T., and Meinwald, J. 1966. Defensive secretions of arthropods. Science 153:1341–1350.

    Google Scholar 

  • Eisner, T., van Tassell, E., and Carrel, J. E. 1967. Defensive use of a “fecal shield” by a beetle larva. Science 158:1471–1473.

    Google Scholar 

  • Eisner, T., Attygalle, A. B., Conner, W. E., Eisner, M., Macleod, E., and Meinwald, J. 1996. Chemical egg defense in a green lacewing (Ceraeochrysa smithi). Proc. Natl. Acad. Sci. U.S.A. 93:3280–3283.

    Google Scholar 

  • Evans, W. C. 1979. Tropane alkaloids of the Solanaceae, pp. 241–254, in W. G. D'Arcy (ed.). Solanaceae: Biology and Systematics. Columbia University Press, New York.

    Google Scholar 

  • Hare, J. F., and Eisner, T. 1993. Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: Effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloidladen prey. Oecologia 96:9–18.

    Google Scholar 

  • Haskins, C. P. 1970. Researchers in the biology and social behavior of primitive ants, pp. 355–388, in L. R. Aronson, E. Tobach, D. S. Lehrman, and J. S. Rosenblatt (eds.). Development and Evolution of Behavior. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Hegnauer, R. 1992. Chemotaxonomie der Pflanzen. Birkhäuser Verlag, Basel.

    Google Scholar 

  • HÖlldobler, B., and Wilson, E. O. 1990. The Ants. Belknap Press of Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Horwitt, M. K. 1960. Vitamin E and lipid metabolism in man. Am. J. Clin. Nutr. 8:451–461.

    Google Scholar 

  • Howard, D. F., and Tschinkel, W. R. 1975. Aspects of necrophoric behavior in the red imported fine ant, Solenopsis invicta. Behavior 56:157–179.

    Google Scholar 

  • Keukens, E. A., de Vrije, T., Jansen, L. A., de Boer, H., Jassen, M., de Kroon, A. I., Jongen, W. M., and de Kruijff, B. 1996. Glycoalkaloids, selectively pemeabilize cholesterol containing biomembranes. Biochim. Biophys. Acta 1279:243–250.

    Google Scholar 

  • Lawrence, J. F., Chadha, R. K., Ratnayake, W. M. N., and Truelove, J. F. 1994. An incident of elevated levels of unsaturated free fatty acids in mussels from Nova Scotia and their toxic effects in mice after intraperitoneal injection. Nat. Toxins 2:318–321.

    Google Scholar 

  • McLafferty, F. W., and Stauffer, D. B. 1989. The Wiley/NBS Registry of Mass Spectral Data. John Wiley & Sons, New York.

    Google Scholar 

  • Mitchell, B. K., and Harrison, G. D. 1985. Effects of Solanum glycoalkaloids on chemosensilla in the Colorado potato beetle: A mechanism of feeding deterrence? J. Chem. Ecol. 11:73–83.

    Google Scholar 

  • Mohamed, M. A., Quisenberry, S. S., and Moellenbeck, D. J. 1992. 6,10,14-Trimethylpentadecan-2-one: A Bermuda grass phagostimulant to fall armyworm (Lepidoptera: Noctuidae). J. Chem. Ecol 18:673–682.

    Google Scholar 

  • Olmstead, K. L. 1994. Waste products as chrysomelid defenses, pp. 311–318, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of the Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Olmstead, K. L. 1996. Cassidine defenses and natural enemies, pp. 3–21, in P. H. A. Jolivet, and M. L. Cox (eds.). Chrysomelidae Biology, SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Olmstead, K. L., and Denno, R. F. 1993. Effectiveness of tortoise beetle larval shields against different predator species. Ecology 74:1394–1405.

    Google Scholar 

  • Pasteels, J. M., GrÉgoire, J. C., and Rowell-Rahier, M. 1983. Chemical defense in arthropods. Annu. Rev. Entomol. 28:263–284.

    Google Scholar 

  • Pasteels, J. M., Rowell-Rahier, M., Braekman, J-C., and Daloze, D. 1984. Chemical defenses in leaf beetles and their larvae: The ecological, evolutionary and taxonomic significance. Biochem. Syst. Ecol. 12:395–406.

    Google Scholar 

  • Pasteels, J. M., Braekman, J. C., and Daloze, D. 1988. Chemical defense in the Chrysomelidae, pp. 231–250, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). The Biology of the Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Pasteels, J. M., Duffy, S. S., and Rowell-Rahier, M. 1990. Toxins in Chrysomelid beetles: Possible evolutionary sequence from de novo synthesis to derivation from food plant chemicals. J. Chem. Ecol. 16:211–222.

    Google Scholar 

  • Peterson, S. C., Johnson, D. N., and Leguyader, J. L. 1987. Defensive regurgitation of allelochemicals from host cyanogenesis by eastern tent caterpillars. Ecology 68:1268–1272.

    Google Scholar 

  • Pongprayoon, U., Baeckstrom, P., Jacobsson, U., Lindstrom, M., and Bohlin, L. 1992. Antispasmodic activity of b-damascenone and E-phytol isolated from Ipomea pes-caprae. Planta Med. 58:19–21.

    Google Scholar 

  • Price, K. R., Mellon, F. A., Self, R., Fenwick, G. R., and Osman, S. F. 1985. Fast atom bombardment mass spectrometry of Solanum glycoalkaloids and its potential for mixture analysis. Biomed. Mass. Spec. 12:79–85.

    Google Scholar 

  • Rasool, N., Ahmad, V. U., and Malik, A. 1991. Terpenoids from Pentatropis spiralis. Phytochemistry 30:1331–1332.

    Google Scholar 

  • Regnier, F. E., and Wilson, E. O. 1968. The alarm-defense system of the ant Acanthomyops claviger. J. Insect Physiol. 14:955–970.

    Google Scholar 

  • Roddick, J. G. 1986. Steroidal alkaloids of the Solanaceae, pp. 201–222, in W. G. D'Arcy (ed.). Solanaceae: Biology and Systematics. Columbia University Press, New York.

    Google Scholar 

  • Roddick, J. G. Rijnenberg, A. L., and Weissenberg, M. 1990. Membrane-disrupting properties of the steriodal glycoalkaloids solanidine and solamargine. Phytochemistry 29:1513–1518.

    Google Scholar 

  • Root, R. B., and Messina, F. J. 1983. Defensive adaptations and natural enemies of a case-bearing beetle, Exema canadensis (Coleoptera: Chrysomelidae). Psyche 90:67–80.

    Google Scholar 

  • Schmitt, M. 1988. The Criocerinae: Biology, phylogeny, and evolution, pp. 475–496, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). The Biology of the Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Selman, B. J. 1988. Chrysomelids and ants, pp. 463–473, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). The Biology of the Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sims, J. J., and Pettus, J. A. 1976. Isolation of free cis-and trans-phytol from the red alga Gracillaria andersoniana. Phytochemistry 15:1076–1077.

    Google Scholar 

  • Singh, B., Agrawal, P. K., and Thakur, R. S. 1991. Isolation of trans-phytol from Phyllanthus niruri. Planta Med. 57:98–99.

    Google Scholar 

  • Smiley, J. T., Horn, J. M., and Rank, N. E. 1985. Ecological effects of salicin at three trophic levels: New problems from old adaptations. Science 229:649–651.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1995. Biometry. W. H. Freeman and Co., New York.

    Google Scholar 

  • Southwood, T. R. E. 1973. The insect/plant relationship-an evolutionary perspective. Symp. R. Entomol. Soc. London 6:3–33.

    Google Scholar 

  • Steinberg, D., Avigan, J., Mize, C. E., Baxter, J. H., Cammermeyer, J., Fales, H. M., and Highet, P. F. 1966. Effects of dietary phytol and phytanic acid in animals. J. Lipid Res. 7:684–693.

    Google Scholar 

  • Strong, D. R., Lawton, J. H., and Southwood, T. R. E. 1984. Insects on Plants. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Tingey, W. M. 1984. Glycoalkaloids as pest resistance factors. Am. Potato J. 61:157–167.

    Google Scholar 

  • Vasconcellos-Neto, J., and Jolivet, P. 1994. Cycloalexy among chrysomelid beetle, pp. 303–310, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of the Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • White, R. E. 1993. A revision of the subfamily Criocerinae (Chrysomelidae) of North America North of Mexico. U.S.D.A. Technical Bulletin 1805, 158 pp.

  • Whitman, D. W., Blum, M. S., and Alsop, D. W. 1990. Allomones: Chemicals for defense, pp. 289–352, in D. I. Evans, and J. O. Schmidt (eds.). Insect Defense: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

    Google Scholar 

  • Zitnak, A. 1977. Steroids and capsaicinoids of solanaceous food plants, pp. 41–91, in N. F. Childers, and G. M. Russo (eds.). Nightshades and Health. Somerset Press, Somerville, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, T.C., Vencl, F.V. Larval Beetles Form a Defense from Recycled Host-Plant Chemicals Discharged as Fecal Wastes. J Chem Ecol 24, 765–785 (1998). https://doi.org/10.1023/A:1022382931766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022382931766

Navigation