Skip to main content
Log in

Experimental Determination of the Longitudinal Dispersivity During the Injection of a Micro-Cement Grout in a One-Dimensional Soil Column

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In order to describe the basic phenomenon of miscible grout propagation during the injection in a saturated and deformable porous medium, a general mathematical model was proposed, which accounts for the existing coupling between the fluid flow analysis, the miscible grout transport, and the solid skeleton deformation, leading to a realistic prediction of the injected zone. The development of the model was made concurrently with laboratory experiments to determine the model parameters. This paper describes the determination of the longitudinal dispersivity during the transport of a micro-cement grout injected in a one-dimensional soil column, by relying on image processing analysis. The application concerned here is the injection of soils for improving their properties, that is, to reduce permeability, increase mechanical strength or reduce the deformability. The longitudinal dispersion coefficient is an essential parameter governing the mixing process and the evolution of the transition zone, and thus the injection efficiency. Finally, the comparison between simulated results from the developed model and experimental data, essential to validate the model from a phenomenological standpoint, is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almosni, A.: 2000, —Injection d'un fluide miscible dans un milieu poreux. Rapport de Stage Scientifique LMS-EPFL, 34 p.

  • Azzar, G.: 1997, Modélisation des injections de coulis de bentonite-ciment dans les sols, PhD Thesis, Ecole Nationale Supérieure d'Arts et de Métiers de Bordeaux, France.

  • Bear, J.: 1961, Some experiments in dispersion, J. Geophys. Res. 66(8), 2455–2467.

    Google Scholar 

  • Bear, J. and Bachmat, Y.: 1991, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bidner, M. S. and Porcelli, P. C.: September 1996, Influence of capillary pressure, adsorption and dispersion on channel flood transport phenomena, Transport Porous Med. 24(3), 275–296.

    Google Scholar 

  • Bouchelaghem, F.: 2001, Injection d'un coulis de micro-ciment dans un milieu poreux saturé déformable: modélisation et expérimentation, PhD Thesis No. 2433, Swiss Federal Institute of Technology, Lausanne. (Civil Engineering)

    Google Scholar 

  • Bouchelaghem, F. and Vulliet, L.: 2001, Mathematical and numerical filtration–advection–dispersion model of miscible grout propagation in saturated porous media, Int. J. Numer. Anal. Met. 25(12), 1195–1227.

    Google Scholar 

  • Bouchelaghem, F., Vulliet, L., Leroy, D., Descoeudres, F. and Laloui, L.: 2001, Real scale miscible grout injection experiment and performance of advection–dispersion–filtration model, Int. J. Numer. Anal. Met. 25(12), 1149–1173.

    Google Scholar 

  • De Josselin de Jong, G.: 1958, Longitudinal and transverse diffusion in granular deposits, T. Am. Geophys. Union 37, 67–74.

    Google Scholar 

  • Delgado, J. M. P. Q. and Guedes de Carvalho, J. R. F.: 2001, Measurement of the coefficient of transverse dispersion in flow through packed beds for a wide range of values of the schmidt number, Transport Porous Med. 44, 165–180.

    Google Scholar 

  • Descoeudres, A.: September 1999, —Mesure de la position du front de propagation d'un coulis de microciment dans un milieu poreux Basée sur les variations de Résistivité Eléctrique. Rapport de Stage LMS-EPFL, Lausanne.

  • Dullien, F. A. L.: 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  • Grubert, D.: 1999, Effective parameter interpretation and extrapolation of dispersion simulations by means of a simple two-velocity model, Transport Porous Med. 37, 153–167.

    Google Scholar 

  • Gupta, S. P. and Greenkorn, R. A.: August 1974, Determination of dispersion and nonlinear adsorption parameters for flow in porous media, Water Resour. Res. 10(4), 839–846.

    Google Scholar 

  • Herzig, J. P., Leclerc, D. M. and Le Goff, P.:May 1970, Flow of suspensions through porous media – application to deep bed filtration, Ind. Eng. Chem. 62(5), 8–35.

    Google Scholar 

  • Honma, S.: 1984, Finite element analysis of the injection and distribution of chemical grout in soils, PhD (Civil Engineering) Thesis, The University of Wisconsin-Milwaukee.

  • Huang, K., Toride, N. and Van Genuchten M. Th.: March 1995, Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns, Transport Porous Med. 18(3), 283–302.

    Google Scholar 

  • Idigbe, K. I.: 1989, Application of stability theory and finite element simulation to characterize miscible displacements, PhD (Civil Engineering) Thesis, The University of Texas at Austin.

  • Irwin, N. C., Botz, M. M. and Greenkorn, R. A.: November 1996, Experimental investigation of characteristic length scale in periodic heterogeneous porous media, Transport Porous Med. 25(2), 235–246.

    Google Scholar 

  • Ives, K. J.: 1971, Filtration of water and wastewater, Environ. Control 2, 293–313.

    Google Scholar 

  • Kwok, W., Hayes, R. E. and Nasr-El-Din, H. A.: April 1995, Dispersion in consolidated sandstone with radial flow, Transport Porous Med. 18(4), 37–66.

    Google Scholar 

  • Labview: 1997, Graphical Programming for Instrumentation, Function and VI Reference Manual, National Instruments, Copyright 1997.

  • Lafolie, F., Hayot, Ch. and Schweich, D.: 1997, Experiments on solute transport in aggregated porous media: are diffusion within aggregates and hydrodynamic dispersion independent? Transport Porous Med. 29, 281–307.

    Google Scholar 

  • Maple, V: November 1998, Release 5.1. National Instruments, Copyright 1981–1998.

  • Marle, C.: 1972, Cours de Production, Les Ecoulements Polyphasiques en Milieu Poreux, Tome IV, Editions Technip et Institut Français du Pétrole, Paris.

    Google Scholar 

  • Nicolini, E. and Nova, R.: 2000, Modelling of a tunnel excavation in a non-cohesive soil improved with cement mix injections, Comput. Geotech. 27, 249–272.

    Google Scholar 

  • Ogata, A. and Banks, R. B.: 1961, A solution of the differential equation of longitudinal dispersion in porous media, Professional Paper 411-A, U.S. Geological Survey, Washington, D.C.

    Google Scholar 

  • Pfannkuch, H. O.: 1963, Contribution à l'etude des déplacements de fluides miscibles dans un milieu poreux, Rev. I. Fr. Pétrol 18(2), 215–270.

    Google Scholar 

  • Scheidegger, A. E.: 1974, The Physics of Flow Through Porous Media, 3rd edn., University of Toronto Press.

  • Thiele, M.: 1997, Gravity affected lateral dispersion and diffusion in stationary horizontal porous medium shear flow, Transport Porous Med. 26, 183–204.

    Google Scholar 

  • Viotti, P.: 1997, Scaling properties of tracer trajectories in a saturated porous medium, Transport Porous Med. 27, 1–16.

    Google Scholar 

  • Yang, D., Udey, N. and Spanos, T. J. T.: Automaton simulation of dispersion in porous media, Transport Porous Med. 32, 187–198.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Bouchelaghem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchelaghem, F., Almosni, A. Experimental Determination of the Longitudinal Dispersivity During the Injection of a Micro-Cement Grout in a One-Dimensional Soil Column. Transport in Porous Media 52, 67–94 (2003). https://doi.org/10.1023/A:1022376225651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022376225651

Navigation