Skip to main content
Log in

Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Arachidonic acid (AA) is a precursor of biologically activeprostaglandines and leukotrienes. The commercial source for AA at present is afungus, but the recently discovered coccoid green alga,Parietochlorisincisa comb. nov., in which over 90% of total AA is deposited intriacylglycerols, makes this species a potential candidate for commercialproduction of AA. We investigated the effect of the light-regime on cell-AAcontent and on culture productivity, by manipulating the intensity of the lightsource, the length of the light-path (LPL), and the population density ofcultures grown in flat plate glass reactors under both controlled laboratoryconditions (continuously illuminated) as well as outdoors. The effect ofnitrogen deprivation on culture content of AA and its productivity was alsostudied.In all experiments, the longer light-path reactors with the highest arealvolumes (L m−2) yielded the highest culture-AA or the highestamount of AA harvested per illuminated reactor surface. Highest culture contentof AA was obtained in cultures exposed to strong light andnitrogen-deprivation.In contrast, highest cell-AA content was obtained in cultures receiving thelowest light-dose. Maximum culture content of AA obtained in the laboratory was2667 mg L−1, reached after a 38-day growth period(of which the final 17 days took place in nitrogen-free medium), undercontinuous exposure to 2000 μmol photon m−2s−1. Maximal culture content of AA outdoors wassignificantly lower compared with the maximum obtained in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahern T.J., Katoh S. and Sada E. 1983. Arachidonic acid production by the red alga Porphyridium cruentum. Biotech. Bioengng. 25: 1057-1070.

    Google Scholar 

  • Bajpai P. and Bajpai P.K. 1993. Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotechnol. 30: 161-183.

    Google Scholar 

  • Bigogno C., Khozin-Goldberg I., Boussiba S., Vonshak A. and Cohen Z. 2002a. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa. Phytochemistry 60: 497-503.

    Google Scholar 

  • Bigogno C., Khozin-Goldberg I. and Cohen Z. 2002b. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry 60: 135-143.

    Google Scholar 

  • Ben-Amotz A., Tornabene T.G. and Thomas W.H. 1985. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 72-81.

    Google Scholar 

  • Cohen Z. 1990. The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium crentum. J. Am. Oil. Chem. Soc. 67: 916-920.

    Google Scholar 

  • Cohen Z. 1999. Polyunsaturated fatty acids of Porphyridium. In: Cohen Z. (ed.), Chemicals from Microalgae. Taylor and Francis Ltd, London, Philadelphia, pp. 1-32.

    Google Scholar 

  • Cohen Z., Norman H.A. and Heimer Y.M. 1995. Microalgae as a source of omega-3 fatty acids. World Rev. Nutr. Diet. 77: 1-31.

    Google Scholar 

  • Cohen Z., Reungjitchachawali M., Siangdung W. and Tanticharoen M. 1993. Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J. appl. Phycol. 24: 328-312.

    Google Scholar 

  • Cohen Z., Vonshak A., Boussiba S. and Richmond A. 1988. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J. Phycol. 24: 328-332.

    Google Scholar 

  • Dunstan G.A., Volkman J.K., Barrett S.M., Leroi J.M. and Jeffrey S.W. 1994. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155-161.

    Google Scholar 

  • Eichenberger W. and Gribi C. 1994. Diacylglyceryl-alpha-D-glucuronide from Ochromonas danica (Chrysophyceae). J. Plant Physiol. 144: 272-276.

    Google Scholar 

  • Hiyashi M., Toda K., Ishiko H., Komatsu R. and Kitaoka S. 1994. Effects of shifting pH in the stationary phase of growth on the chemical composition of Euglena gracilis. Biosci. Biotech. Biochem. 58: 1964-1967.

    Google Scholar 

  • Hu Q., Gutterman H. and Richmond A. 1996. A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotech. & Bioengng. 51: 51-60.

    Google Scholar 

  • Innis S.M. 1991. Essential fatty acids in growth and development. Progr. Lipid Res. 30: 39-103.

    Google Scholar 

  • Klyachko-Gurvich G., Tsoglin L.N., Doucha J., Kopetskii J., Shebalina B.I. and Semeneko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107: 240-249.

    Google Scholar 

  • Kim M.K., Dubacq J.P., Thomas J.C. and Giraud G. 1996. Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43: 49-55.

    Google Scholar 

  • Koletzko B., Decsi T. and Demmelmair H. 1996. Arachidonic acid supply and metabolism in human infants born at full term. Lipids 31: 79-83.

    Google Scholar 

  • Koletzko B., Schmidt E., Bremer H.J., Haung M. and Harzer G. 1989. Effects of dietary long-chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. Eur. J. Pediatr. 148: 669-675.

    Google Scholar 

  • Kyle D.J. 1995. Arachidonic acid and methods for the production and use thereof. US patent app. 367, 881.

  • Lee Y.K. and Tan H.M. 1988. Effect of temperature, light intensity and dilution rate on the cellular composition of red alga Porphyridium cruentum in light-limited chemostat cultures. Mircen J. 4: 231-237.

    Google Scholar 

  • Molina Grima E., García Camacho F., Sánchez Perez J.A., Acien Fermandez F.G., Fermandez Sevilla J.M. and Valdes Sanz F. 1994. Effect of dilution rate on eicosapentaenoic acid productivity of Phaeodactylum tricornutum UTEX 640 in outdoor chemostat culture. Biotech. Letts. 16: 1035-1040.

    Google Scholar 

  • Molina Grima E., Sánchez Perez J.A., García Camacho F., García Sánchez J.L. and Fernández Sevilla J.M. 1995. Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbana ALII-4. J. appl. Phycol. 7: 129-134.

    Google Scholar 

  • Petkov G.D., Furnadzieva S.T. and Andreeva R.D. 1994. Fatty acid and sterol composition of Nannochloris sp. Arch. Hydrobiol. 102: 133-135.

    Google Scholar 

  • Reitan K.I., Rainuzzo J.R. and Olsen Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30: 972-979.

    Google Scholar 

  • Richmond A. 2000. Microalgal biotechnology at the turn of the millennium: A personal review. J. appl. Phycol. 12: 441-451.

    Google Scholar 

  • Richmond A. Handbook of Microalgal Culture. In: Richmond A. (ed.). Blackwell Science Books (in press).

  • Richmond A. and Zhang C.W. 2001. Optimization of a flat plate glass reactor for mass production of Nannochloris sp. outdoors. J. Biotech. 85: 259-269.

    Google Scholar 

  • Servel M.O., Clarie C., Derrien A., Coiffard L. and De Roeck H.Y. 1994. Fatty acid composition of some marine microalgae. Phytochemistry 36: 691-693.

    Google Scholar 

  • Shifrin N.S. and Chisholm S.W. 1981. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17: 374-384.

    Google Scholar 

  • Shimizu S., Shinmen Y., Kawashima H., Akimoto K. and Yamada H. 1987. Production of C-20 polyunsaturated fatty acids by fungi. In: Proceeding of World Conference on Biotechnology for the fats and oils Industry. AOCS, Champaign, IL, USA, pp. 1000-1006.

    Google Scholar 

  • Singh M.D. and Chandra M.D. 1988. Biochemical and cellular effects of fish and fish oils. Prog. Food Nutr. Sci. 12: 371-419.

    Google Scholar 

  • Spoehr H. and Milner S. 1949. Fatty acid content and composition of Chlorella vulgarilis modulated by growth conditions. Am. J. Bot. 36: 56-61.

    Google Scholar 

  • Suen Y., Hubbard J.S., Holzer G. and Tornabene T.G. 1987. Total lipid production of the green alga Nannochloropsis sp. under different nitrogen regimes. J. Phycol. 23: 289-296.

    Google Scholar 

  • Sukenik A., Yamaguchi Y. and Livne A. 1993. Alterations in lipid molecular species of the marine Eustigmatophyte Nannochloropsis sp. J. Phycol. 29: 620-626.

    Google Scholar 

  • Watanabe S., Hirabayshi S., Boussiba S., Cohen Z., Vonshak A. and Richmond A. 1996. Parietochloris incisa comb. nov. (Trebouxiophyceae, Chlorophyta). Phycol. Res. 44: 107-108.

    Google Scholar 

  • WHO/FAO 1977. Dietary fats and oils inhuman nutrition. Report of an expert consulation. FAO, Rome.

    Google Scholar 

  • Wu X.C., Lu B.R. and Tseng C.K. 1995. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta). Chin. J. Ocean. Limn. 13: 370-373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng-Wu, Z., Cohen, Z., Khozin-Goldberg, I. et al. Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta). Journal of Applied Phycology 14, 453–460 (2002). https://doi.org/10.1023/A:1022375110556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022375110556

Navigation