Skip to main content
Log in

Fast and Parallel Interval Arithmetic

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Infimum-supremum interval arithmetic is widely used because of ease of implementation and narrow results. In this note we show that the overestimation of midpoint-radius interval arithmetic compared to power set operations is uniformly bounded by a factor 1.5 in radius. This is true for the four basic operations as well as for vector and matrix operations, over real and over complex numbers. Moreover, we describe an implementation of midpoint-radius interval arithmetic entirely using BLAS. Therefore, in particular, matrix operations are very fast on almost any computer, with minimal effort for the implementation. Especially, with the new definition it is seemingly the first time that full advantage can be taken of the speed of vector and parallel architectures. The algorithms have been implemented in the Matlab interval toolbox INTLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, and S. Hammarling, LAPACK User's Guide, SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  3. G. F. Corliss, Comparing software packages for interval arithmetic, Preprint presented at SCAN'93, Vienna, 1993.

  4. J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  5. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's Guide, SIAM, Philadelphia, PA, 1979.

    Google Scholar 

  6. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Software, 16 (1990), pp. 18–28.

    Google Scholar 

  7. I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros, Numer. Math., 18 (1972), pp. 305–320.

    Google Scholar 

  8. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  9. ANSI/IEEE 754–1985, Standard for Binary Floating-Point Arithmetic, 1985.

  10. R. B. Kearfott, M. Dawande, and C. Hu, INTLIB: A portable Fortran-77 interval standard function library, ACM Trans. Math. Software, 20 (1994), pp. 447–459.

    Google Scholar 

  11. R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich, PASCAL-XSC: Language reference with examples, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  12. O. Knüppel, Einschlieβungsmethoden zur Bestimmung der Nullstellen nichtlinearer Gleichungssysteme und ihre Implementierung, PhD thesis, Technische Universität Hamburg-Harburg, 1994.

  13. O. Knüppel, PROFIL/BIAS—a fast interval library, Computing, 53 (1994), pp. 277–287.

    Google Scholar 

  14. R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4 (1969), pp. 187–201.

    Google Scholar 

  15. R. Krier, Komplexe Kreisarithmetik, PhD thesis, Universität Karlsruhe, 1973.

  16. U. Kulisch, Grundlagen des numerischen Rechnens (Reihe Informatik 19), Bibliographisches Institut, Mannheim, 1976.

    Google Scholar 

  17. C. Lawo, C-XSC, a programming environment for verified scientific computing and numerical data processing, in Scientific Computing with Automatic Result Verification, E. Adams and U. Kulisch, eds., Academic Press, Orlando, FL, 1992, pp. 71–86.

    Google Scholar 

  18. C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic linear algebra subprograms for FORTRAN usage, ACM Trans. Math. Software, 5 (1979), pp. 308–323.

    Google Scholar 

  19. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  20. J. J. Morè and M.Y. Cosnard, Numerical solution of non-linear equations, ACM Trans. Math. Software, 5 (1979), pp. 64–85.

    Google Scholar 

  21. A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  22. S. Oishi, private communication, 1998.

  23. L. D. Petković and M. S. Petković, Inequalities in circular arithmetic: a survey, Math. Appl., 430 (1998), pp. 325–340.

    Google Scholar 

  24. S. M. Rump, Kleine Fehlerschranken bei Matrixproblemen, PhD thesis, Universität Karlsruhe, 1980.

  25. S. M. Rump, Validated solution of large linear systems, in Computing Supplementum, vol. 9, R. Albrecht, G. Alefeld, and H. J. Stetter, eds., Springer-Verlag, Berlin, 1993, pp. 191–212.

    Google Scholar 

  26. S. M. Rump, INTLAB-INTerval LABoratory, in Developments in Reliable Computing, ed. T. Csendes, Kluwer Academic Publishers, 1999.

  27. A. Törn and A. Žilinskas, Global Optimization, Springer-Verlag, Berlin, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rump, S.M. Fast and Parallel Interval Arithmetic. BIT Numerical Mathematics 39, 534–554 (1999). https://doi.org/10.1023/A:1022374804152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022374804152

Navigation