Skip to main content
Log in

A Method of Semipassive Attitude Stabilization of a Spacecraft in the Geomagnetic Field

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A method is proposed that enables one to accomplish semipassive attitude stabilization of a spacecraft moving in a circular Keplerian orbit in the geomagnetic field. The method is developed on the basis of the electrodynamic effect of the influence of the Lorentz forces acting on the charged spacecraft's surface. It possesses advantages such as control law simplicity, reliability, cost efficiency, small mass, and the possibility of using the basic control system components not only for attitude stabilization of a spacecraft but also for ensuring its electrostatic radiation screening. The possibility of implementing the method for slightly inclined orbits is proved analytically. Two versions of implementation of the method are proposed. The calculations confirmed the possibility of using also these versions for orbits whose inclinations are not small. The advantages of each version are revealed and practical recommendations for their utilization are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bentsik, E., Precessioni Regolari di un Giriscopio Soggetto a Forze Newtoniane e a Forze di Potenza Nulla, Rend. Sem. Mat. Univ. Padova, 1975, vol. 54.

  2. Lunev, V.V., Spherical Motions of a Spacecraft under the Action of Null Potential Forces, in Tr. 10–kh chtenii, posvyashchennykh razrabotke nauchnogo naslediya i razvitiyu idei K.E. Tsiolkovskogo. Sektsiya “Mekhanika kosmicheskogo poleta,” Kaluga, 1975 (Proc. of 10th Readings Devoted to Studying Scientific Heritage of K.E. Tsiolkovskii and Developing His Ideas. Section “Mechanics of Space Flight”, Kaluga, 1975), Moscow, 1976, p. 72.

  3. Kuznetsov, L.I., Influence of Electric Charge on Rotational Motion of the Earth's Satellite, Prikl. Mekh., Leningrad: Leningr. Gos. Univ., 1981, no. 5, pp. 78–83.

    Google Scholar 

  4. Lyakhovka, G.V., Special Cases of Attitude Motion of a Body with a Shield of Electrostatic Protection, Prikl. Mekh., Leningrad: Leningr. Gos. Univ., 1981, no. 5, pp. 48–63.

    Google Scholar 

  5. Chikova, N.V., Perturbation of Rotational Motion of a Body in the Central Gravitational Field by Lorentz Forces, Prikl. Mekh., Leningrad: Leningr. Gos. Univ., 1981, no. 5, pp. 38–47.

    Google Scholar 

  6. Beletskii, V.V. and Khentov, A.A., Secular Evolution of Rotational Motion of a Satellite with an Electrified Screen, Kosm. Issled., 1982, vol. 20, no. 3, pp. 342–351.

    Google Scholar 

  7. Kuznetsov, L.I. and Tikhonov, A.A., Electric Charge Influence on Rotational Motion of the Earth's Satellite, Vestn. Leningr. Gos. Univ., Ser. 1, 1985, vol. 1 (no. 1), pp. 113–115.

    Google Scholar 

  8. Tikhonov, A.A., Impact of Charge Asymmetry on Rotational Motion of a Screened Body in the Geomagnetic Field, Vestn. Leningr. Gos. Univ., Ser. 1, 1987, vol. 4, (no. 22), pp. 64–69.

    Google Scholar 

  9. Tikhonov, A.A., Stabilization of a Charged Body in the Earth's Magnetic Field, Vestn. Leningr. Gos. Univ., Math., Mekh., Astron., 1988.

  10. Tikhonov, A.A., Influence of Orbit Ellipticity on Planar Oscillations of a Body under the Action of Lorentz Forces, Prikl. Mekh., Leningrad: Leningr. Gos. Univ., 1988, no. 7, pp. 28–34.

    Google Scholar 

  11. Lyakhovka, G.V. and Tikhonov, A.A., Rotational Motion of the Earth's Satellite in the Geomagnetic Field, Kosm. Issled., 1994, vol. 32, nos. 4–5, pp. 62–67.

    Google Scholar 

  12. Tikhonov, A.A., Oscillations of a Screened Satellite in the Plane of a Slightly Elliptic Orbit, Prikl. Mekh., St.-Petersburg: Izd. St.-Peterburg. Univ., 1995, no. 9, pp. 90–101.

    Google Scholar 

  13. Petrov, K.G. and Tikhonov, A.A., Moment of Lorentz Forces Acting upon a Charged Satellite in the Earth's Magnetic Field. Part 2: Calculation of the Moment and Estimation of Its Components, Vestn. St.-Peterburg. Univ., Ser. 1, 1999, vol. 3 (no. 15), pp. 81–91.

    Google Scholar 

  14. Mandea, M. et al., International Geomagnetic Reference Field-2000, Physics of the Earth and Planetary Interiors, 2000, vol. 120, pp. 39–42.

    Google Scholar 

  15. McIlwain, R.J., Changing the Satellite Angular Momentum with the Help of the Earth's Magnetic Field, in Problemy orientatsii iskusstvennykh sputnikov Zemli (Problems of Orientation of Earth's Satellites), Moscow: Nauka, 1966, pp. 295–323.

    Google Scholar 

  16. Trukhanov, K.A., Ryabova, T.Ya., and Morozov, D.Kh., Aktivnaya zashchita kosmicheskikh korablei (Active Protection of Spacecraft), Moscow: Atomizdat, 1970.

    Google Scholar 

  17. Lunev, V.V., Integrable Cases in the Problem of Motion of a Heavy Solid Body with a Fixed Point in the Field of Lorentz Forces, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4.

  18. Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel'no tsentra mass (Motion of an Artificial Satellite with Respect to the Center of Mass), Moscow: Nauka, 1965.

    Google Scholar 

  19. Sarychev, V.A., Problems of Artificial Satellite Orientation, Itogi Nauki Tekh., Ser.: Issled. Kosm. Prostr., vol. 11, Moscow: VINITI, 1978.

    Google Scholar 

  20. Sarychev, V.A. and Ovchinnikov, M.Yu., Magnetic Systems of Orientation for Artificial Satellites of the Earth, Issled. Kosm. Prostr., vol. 23, Moscow: VINITI, 1985.

    Google Scholar 

  21. Pivovarov, M.L., Evolution of Rotation of a Satellite with a Damping Flywheel, Preprint of Space Res. Inst., USSR Acad. Sci., Moscow, 1986, no. 1106.

  22. Pivovarov, M.L., Damping the Oscillations of a Satellite with a Large Magnetic Moment, Preprint of Space Res. Inst., USSR Acad. Sci., Moscow, 1987, no. 1251.

  23. Pivovarov, M.L., Liquid Damping of Oscillations of a Satellite with Large Magnetic Moment, Preprint of Space Res. Inst., USSR Acad. Sci., Moscow, 1990, no. 1622.

  24. Bellman, R., Stability Theory of Differential Equations, New York: McGraw-Hill, 1953. Translated under the title Teoriya ustoichivosti reshenii differentsial'nykh uravnenii, Moscow: Izd. Inostr. Lit., 1954.

    Google Scholar 

  25. Malkin, I.G., Teoriya ustoichivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka, 1966.

    Google Scholar 

  26. Kovalenko, A.P., Magnitnye sistemy upravleniya kosmicheskimi letatel'nymi apparatami (Magnetic Systems of Spacecraft Control), Moscow: Mashinostroenie, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonov, A.A. A Method of Semipassive Attitude Stabilization of a Spacecraft in the Geomagnetic Field. Cosmic Research 41, 63–73 (2003). https://doi.org/10.1023/A:1022355730291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022355730291

Keywords

Navigation