Applied Psychophysiology and Biofeedback

, Volume 28, Issue 1, pp 1–12 | Cite as

Neurofeedback Treatment for Attention-Deficit/Hyperactivity Disorder in Children: A Comparison with Methylphenidate

  • Thomas Fuchs
  • Niels Birbaumer
  • Werner Lutzenberger
  • John H. Gruzelier
  • Jochen Kaiser
Article

Abstract

Clinical trials have suggested that neurofeedback may be efficient in treating attention-deficit/hyperactivity disorder (ADHD). We compared the effects of a 3-month electroencephalographic feedback program providing reinforcement contingent on the production of cortical sensorimotor rhythm (12–15 Hz) and beta1 activity (15–18 Hz) with stimulant medication. Participants were N = 34 children aged 8–12 years, 22 of which were assigned to the neurofeedback group and 12 to the methylphenidate group according to their parents' preference. Both neurofeedback and methylphenidate were associated with improvements on all subscales of the Test of Variables of Attention, and on the speed and accuracy measures of the d2 Attention Endurance Test. Furthermore, behaviors related to the disorder were rated as significantly reduced in both groups by both teachers and parents on the IOWA-Conners Behavior Rating Scale. These findings suggest that neurofeedback was efficient in improving some of the behavioral concomitants of ADHD in children whose parents favored a nonpharmacological treatment.

attention-deficit/hyperactivity disorder (ADHD) neurofeedback electroencephalogram methylphenidate children 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (DSM-IV) (4th ed.). Washington, DC: Author.Google Scholar
  2. Atkins, M., & Milich, R. (1987). IOWA-Conners Teacher Rating Scale. In M. Hersen & A. Bellack (Eds.), Dictionary of behavioral assessment techniques (pp. 273-275). New York: Pergamon.Google Scholar
  3. Birbaumer, N., & Flor, H. (1999). Applied psychophysiology and learned physiological regulation. Applied Psychophysiology and Biofeedback, 24, 35-37.Google Scholar
  4. Brickenkamp, R. (1994). Test d2, Aufmerksamkeits-Belastungs-Test (8th ed.). Göttingen: Hogrefe.Google Scholar
  5. Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53, 607-616.Google Scholar
  6. Chabot, R. J., Merkin, H., Wood, L. M., Davenport, T. L., & Serfontein, G. (1996). Sensitivity and specificity of QEEG in children with attention deficit or specific developmental learning disorders. Clinical Electroencephalography, 27, 26-34.Google Scholar
  7. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (1998). EEG analysis in Attention-Deficit/Hyperactivity Disorder: A comparative study of two subtypes. Psychiatry Research, 81, 19-29.Google Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998). Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 279-291.Google Scholar
  10. Forbes, G. B. (1998). Clinical utility of the Test of Variables of Attention (TOVA) in the diagnosis of attention-deficit/hyperactivity disorder. Journal of Clinical Psychology, 54, 461-476.Google Scholar
  11. Fuchs, T. (1999). Aufmerksamkeit und Neurofeedback. Regensburg: Roderer.Google Scholar
  12. Greenberg, L. M. (1987). An objective measure of methylphenidate response: Clinical use of the MCA. Psychopharmacology Bulletin, 23, 279-282.Google Scholar
  13. Gustafsson, P., Thernlund, G., Ryding, E., Rosen, I., & Cederblad, M. (2000). Associations between cerebral blood-flow measured by single photon emission computed tomography (SPECT), electro-encephalogram (EEG), behaviour symptoms, cognition and neurological soft signs in children with attention-deficit hyperactivity disorder (ADHD). Acta Paediatrica, 89, 830-835.Google Scholar
  14. Hale, T. S., Hariri, A. R., & McCracken, J. T. (2000). Attention-deficit/hyperactivity disorder: Perspectives from neuroimaging. Mental Retardation and Developmental Disability Research Review, 6, 214-219.Google Scholar
  15. Jasper, H. H. (1958). Report of the committee on methods of clinical examination in EEG. Appendix: The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.Google Scholar
  16. Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., van der Gaag, R. J., et al. (1997a). Effects of methylphenidate on event-related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks. Biological Psychiatry, 41, 690-702.Google Scholar
  17. Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., van der Gaag, R. J, et al.. (1997b). Event-related potentials and performance of attention-deficit hyperactivity disorder: Children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41, 595-611.Google Scholar
  18. Kemner, C., Verbaten, M. N., Koelega, H. S., Buitelaar, J. K., van der Gaag, R. J., Camfferman, G., et al. (1996). Event-related brain potentials in children with attention-deficit and hyperactivity disorder: Effects of stimulus deviancy and task relevance in the visual and auditory modality. Biological Psychiatry, 40, 522-534.Google Scholar
  19. Klorman, R. (1991). Cognitive event-related potentials in attention deficit disorder. Journal of Learning Disability, 24, 130-140.Google Scholar
  20. Klorman, R., Brumaghim, J. T., Salzman, L. F., Strauss, J., Borgstedt, A. D., McBride, M. C., et al. (1990). Effects of methylphenidate on processing negativities in patients with attention-deficit hyperactivity disorder. Psychophysiology, 27, 328-337.Google Scholar
  21. Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., et al. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42, 406-416.Google Scholar
  22. La Vaque, T. J., & Rossiter, T. (2001). The ethical use of placebo controls in clinical research: The Declaration of Helsinki. Applied Psychophysiology and Biofeedback, 26, 23-37.Google Scholar
  23. Lazzaro, I., Gordon, E., Li, W., Lim, C. L., Plahn, M., Whitmont, S., et al. (1999). Simultaneous EEG and EDA measures in adolescent attention deficit hyperactivity disorder. International Journal of Psychophysiology, 34, 123-134.Google Scholar
  24. Linden, M., Habib, T., & Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback and Self-Regulation, 21, 35-49.Google Scholar
  25. Lohr, J. M., Meunier, S. A., Parker, L. M., & Kline, J. P. (2001). Neurotherapy does not qualify as an empirically supported behavioral treatment for psychological disorders. The Behavior Therapist, 24, 97-104.Google Scholar
  26. Loiselle, D. L., Stamm, J. S., Maitinsky, S., & Whipple, S. C. (1980). Evoked potential and behavioral signs of attentive dysfunctions in hyperactive boys. Psychophysiology, 17, 193-201.Google Scholar
  27. Lubar, J. F., & Lubar, J. O. (1999). Neurofeedback assessment and treatment for attention deficit/hyperactivity disorders. In J. R. Evans & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback (pp. 103-143). San Diego: Academic Press.Google Scholar
  28. Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O'Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation, 20, 83-99.Google Scholar
  29. Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback and Self-Regulation, 9, 1-23.Google Scholar
  30. Mann, C. A., Lubar, J. F., Zimmerman, A. W., Miller, C. A., & Muenchen, R. A. (1992). Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: Controlled study with clinical implications. Pediatric Neurology, 8, 30-36.Google Scholar
  31. The MTA Cooperative Group. (1999). A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 56, 1073-1086.Google Scholar
  32. McBride, M. C. (1988). An individual double-blind crossover trial for assessing methylphenidate response in children with attention deficit disorder. Journal of Pediatrics, 113, 137-145.Google Scholar
  33. Monastra, V. J., Lubar, J. F., Linden, M., VanDeusen, P., Green, G., Wing, W., et al. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology, 13, 424-433.Google Scholar
  34. Nash, J. K. (2000). Treatment of attention deficit hyperactivity disorder with neurotherapy. Clinical Electroencephalography, 31, 30-37.Google Scholar
  35. Nopoulos, P., Berg, S., Castellenos, F. X., Delgado, A., Andreasen, N. C., & Rapoport, J. L. (2000). Developmental brain anomalies in children with attention-deficit hyperactivity disorder. Journal of Child Neurology, 15, 102-108.Google Scholar
  36. Novak, G. P., Solanto, M., & Abikoff, H. (1995). Spatial orienting and focused attention in attention deficit hyperactivity disorder. Psychophysiology, 32, 546-559.Google Scholar
  37. Pliszka, S. R., Liotti, M., & Woldorff, M. G. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: Event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biol Psychiatry, 48, 238-246.Google Scholar
  38. Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113, 553-565.Google Scholar
  39. Rossiter, T. R., & La Vaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit hyperactivity disorders. Journal of Neurotherapy, 1, 48-59.Google Scholar
  40. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156, 891-896.Google Scholar
  41. Satterfield, J. H., Schell, A. M., & Nicholas, T. (1994). Preferential neural processing of attended stimuli in attention-deficit hyperactivity disorder and normal boys. Psychophysiology, 31, 1-10.Google Scholar
  42. Schlottke, P. F. (1988). Zwischen “Zappelphilipp” und “Hans Guck-in-die-Luft”: Kinder mit Aufmerksamkeitsstörungen. Acta Paedopsychiatrica, 51, 209-219.Google Scholar
  43. Spencer, T., Biederman, J., Wilens, T., Harding, M., O'Donnell, D., & Griffin, S. (1996). Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 409-432.Google Scholar
  44. Stamm, J., Birbaumer, N., Lutzenberger, W., Elbert, T., Rockstroh, B., & Schlottke, P. F. (1982). Event-related potentials during a continuous performance test vary with attentive capacities. In A. Rothenberger (Ed.), Event-related potentials in children. Basic concepts and clinical application (pp. 273-294). Amsterdam: Elsevier.Google Scholar
  45. Steger, J., Imhof, K., Steinhausen, H., & Brandeis, D. (2000). Brain mapping of bilateral interactions in attention deficit hyperactivity disorder and control boys. Clinical Neurophysiology, 111, 1141-1156.Google Scholar
  46. Sterman, M. B., Wyrwicka, W., & Howe, R. (1969). Behavioral and neurophysiological studies of the sensorimotor rhythm in the cat. Electroencephalography and Clinical Neurophysiology, 27, 678-679.Google Scholar
  47. Swanson, J., Castellanos, F. X., Murias, M., LaHoste, G., & Kennedy, J. (1998). Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Current Opinion in Neurobiology, 8, 263-271.Google Scholar
  48. Taylor, M. J., Voros, J. G., Logan, W. J., & Malone, M. A. (1993). Changes in event-related potentials with stimulant medication in children with attention deficit hyperactivity disorder. Biological Psychology, 36, 139-156.Google Scholar
  49. Tewes, U. (1983). Hamburg-Wechsler-Intelligenztest für Kinder—Revision. Bern: Huber.Google Scholar
  50. Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23, 243-263.Google Scholar
  51. Ullmann, R. K., Sleator, E. K., & Sprague, R. L. (1985). A change of mind: The Conners abbreviated rating scales reconsidered. Journal of Abnormal Child Psychology, 13, 553-565.Google Scholar
  52. Wada, N., Yamashita, Y., Matsuishi, T., Ohtani, Y., & Kato, H. (2000). The test of variables of attention (TOVA) is useful in the diagnosis of Japanese male children with attention deficit hyperactivity disorder. Brain Development, 22, 378-382.Google Scholar
  53. Wechsler, D. (1974). Manual for the Wechsler intelligence scale for children. New York: Psychological Corporation.Google Scholar
  54. Zametkin, A. J., & Liotta, W. (1998). The neurobiology of attention-deficit/hyperactivity disorder. Journal of Clinical Psychiatry, 59, 17-23.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Thomas Fuchs
    • 1
  • Niels Birbaumer
    • 1
    • 2
  • Werner Lutzenberger
    • 1
  • John H. Gruzelier
    • 3
  • Jochen Kaiser
    • 1
  1. 1.Institute of Medical Psychology and Behavioral NeurobiologyEberhard-Karls-University of TübingenGermany
  2. 2.Institute of Cognitive NeuroscienceUniversity of TrentoItaly
  3. 3.Department of Behavioral and Cognitive ScienceImperial College School of MedicineLondonUnited Kingdom

Personalised recommendations