Skip to main content
Log in

Novel Chitinolytic Enzymes with Biological Activity Against Herbivorous Insects

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The soil bacteria, Streptomyces albidoflavus, secretes endochitinases and chitobiosidases that are active over a broad range of pH (4–10). Ingestion of this mixture of chitinolytic enzymes significantly reduced the growth and development of Trichoplusia ni and significantly reduced survival of Myzus persicae, Bemisia argentifolii, and Hypothenemus hampei. Perfusion chromatography was used to separate endochitinases from chitobiosidases. The endochitinases had significantly greater biological activity against Bemisia argentifolii than the chitobiosidases. The utility of chitinolytic enzymes as regulators of populations of herbivorous insects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abacus Concepts, Inc. 1989. Super ANOVA: Accessible General Linear Modeling. Abacus Concepts, Inc., Berkeley.

    Google Scholar 

  • Berenbaum, M. 1980. Adaptive significance of midgut pH in larval Lepidoptera. Am. Nat. 115:138–146.

    Google Scholar 

  • Bielka, H., Dixon, H. B. F., Karlson, P., Liebecq, C., Sharon, N., Van Lenten, E. J., Velick, S. F., Vliegenthart, J. F. G., Webb, E. C., Cornish-Brown, A., Loening, K., Moss, G. P., and Reedijk, J. 1984. Enzyme Nomenclature. Academic Press, New York, 646 pp.

    Google Scholar 

  • Boller, T. 1985. Induction of hydrolases as a defense reaction against pathogens, pp. 247–262, in J. L. Key and T. Kosuge (eds.). Alan R. Liss, New York.

    Google Scholar 

  • Broadway, R. M., Williams, D. L., Kain, W. C., Harman, G. E., Lorito, M., and Labeda, D. P. 1995. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett. Appl. Microbiol. 20:271–276.

    Google Scholar 

  • Broekaert, W. F., Van Parijs, J., Allen, A. K., and Peumans, W. J. 1988. Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol. Mol. Plant Pathol. 33:319–331.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Kknowlton, S., Mauvais, C. J., and Brodlie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197.

    Google Scholar 

  • Duffey, S. S., and Felton, G. W. 1989. Plant enzymes in resistance to insects, pp. 289–313, in J. R. Whitaker and P. E. Sonnet (eds.). Biocatalysis in Agricultural Biotechnology. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Fraley, R. T., Frey, N. M., and Schell, J. 1988. Genetic Improvements of Agriculturally Important Crops. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 120 pp.

    Google Scholar 

  • Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37:615–636.

    Google Scholar 

  • Grayson, J. M. 1951. Acidity-alkalinity in the alimentary canal of twenty insect species. V.J. Sci. Jan:46–59.

  • Hedin, P. A. 1983. Plant Resistance to Insects. American Chemical Society, Washington, D.C., 375 pp.

    Google Scholar 

  • Hedrick, S. A., Bell, J. N., Boller, T., and Lamb, C. J. 1988. Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. Plant Physiol. 86:182–186.

    Google Scholar 

  • Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter, D. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163.

    Google Scholar 

  • Hughes, R. K., and Dickerson, A. G. 1991. Modulation of elicitor-induced chitinase and b-1,3-glucanase activity by hormones in Phaseolus vulgaris. Plant Cell Physiol. 32:853–861.

    Google Scholar 

  • Joosten, M. H. A. J., and De Wit, P. J. G. M. 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-glucanases and chitinases. Plant Physiol. 89:945–951.

    Google Scholar 

  • Mauch, F., Mauch-Mani, B., and Boller, T. 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and b-1,3-glucanses. Plant Physiol. 88:936–942.

    Google Scholar 

  • Mishra, S. C., and Sen-Sarma, P. K. 1987. pH trends in the gut of xylophagous insects and their adaptive significance. Mater. Org. 22:311–319.

    Google Scholar 

  • Pegg, G. F., and Young, D. H. 1982. Purification and characterization of chitinase enzymes from healthy and Verticillium albo-atrum-infected tomato plants, and from V. albo-atrum. Physiol. Plant Pathol. 21:389–409.

    Google Scholar 

  • Roberts, W. K., and Selitrennikoff, C. P. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169–176.

    Google Scholar 

  • Rosenthal, G. A., and Janzen, D. H. 1979. Herbivores—Their Interaction with Secondary Plant Metabolites. Academic Press, New York, 718 pp.

    Google Scholar 

  • Ryan, C. A. 1989. Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores. BioEssays 10:20–24.

    Google Scholar 

  • Sahai, A. S., and Manocha, M. S. 1993. Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev. 11:317–338.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U., and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367.

    Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328:33–27.

    Google Scholar 

  • Villacorta, A., and Barrera, J. F. 1993. Nova dieta meridica para criacao de Hupothenemus hampei (Ferrari) (Coleoptera: Scolytidae). An. Soc. Entomol. Bras. 22:405–409.

    Google Scholar 

  • Vogeli-Lange, R., Hansen-Gehri, A., Boller, T., and Neins, F. 1988. Induction of the defenserelated glucanohydrolases, b-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci. 54:171–176.

    Google Scholar 

  • Vogelsang, R., and Barz, W. 1990. Elicitation of b-1,3-glucanase and chitinase activities in cell suspension cultures of Ascochyta rabiei resistant and susceptible cultivars of chickpea (Cicer arietinum). Z. Naturforsch. 45c:233–239.

    Google Scholar 

  • Voisey, C. R., and Slusarenko, A. J. 1989. chitinase mRNA and enzyme activity in Phaseolus vulgaris (L.) increase more rapidly in response to avirulent than to virulent cells of Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 35:403–412.

    Google Scholar 

  • Webb, S. E., and Shelton, A. M. 1988. Laboratory rearing of the imported cabbageworm. N.Y. Food Life Sci. Bull. 122:000.

    Google Scholar 

  • Zhe-fu, L., Danqi, W., Annuo, L., and Weiqin, Z. 1992. Chitinases from seeds of Zea mays and Coix lachryma-jobi L. Purification and some properties. Proc. Biochem. 27:83–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broadway, R.M., Gongora, C., Kain, W.C. et al. Novel Chitinolytic Enzymes with Biological Activity Against Herbivorous Insects. J Chem Ecol 24, 985–998 (1998). https://doi.org/10.1023/A:1022346301626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022346301626

Navigation