Skip to main content
Log in

An automatic device for in vivo absorption spectra acquisition and chlorophyll estimation in phytoplankton cultures

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In order to aid the study of photoacclimation, a new programmable deviceis described which provides automatic on-line acquisition of in vivo cellabsorption in phytoplankton cultures. The system was used for a long-termstudy of Rhodomonas salina grown at constant photon flux density ina nitrate-limited continuous culture with different dilution rates. Particulate absorption measured at the red chlorophyll a (Chl a)maximum was not a good proxy of biomass, because of the large variabilityof cellular chlorophyll induced by nitrogen limitation. However, thedevice is well suited to automatic assessment of Chl a andphycoerythrin (PE) concentrations in phytoplankton cultures, if algal cellsize and concentration are measured in parallel to correct the packagingeffect. The effects of nitrogen limitation on Chl a and PE contentsand particle absorbance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anning T. MacIntyre H.L., Pratt S.M., Sammes P.J., Gibb S. and Geider R.J. 2000. Photoacclimation in the marine diatom Skeletonema costatum. Limnol. Oceanogr. 45: 1807-1817.

    Google Scholar 

  • Berges J.A., Charlebois D.O., Mauzerall D.C. and Falkowski P.G. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 110: 689-696.

    Google Scholar 

  • Bernard O., Malara G. and Sciandra A. 1996. The effects of a controlled fluctuating nutrient environment on continuous cultures of phytoplankton monitored by a computer. J. exp. mar. Biol. Ecol. 197: 263-278.

    Google Scholar 

  • Berner T., Dubinsky Z., Wyman K. and Falkowski P.G. 1989. Photoacclimation and the ‘package’ effect in Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 25: 70-78.

    Google Scholar 

  • Bricaud A., Bedhomme A.L. and Morel A. 1988. Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation. J. Plankton Res. 10: 851-873.

    Google Scholar 

  • Dubinsky Z. 1992. The functional and optical absorption crosssections of phytoplankton photosynthesis. In Falkowski PG, Woodhead AD (eds), Primary Productivity and Biogeochemical Cycles in the Sea, Plenum Press, New York, pp. 31-45.

    Google Scholar 

  • Duysens L.M.N. 1956. The flattening effect of the absorption spectra of suspensions as compared to that of solutions. Biochem. biophys. Acta 19: 1-12.

    Google Scholar 

  • Flynn K.J., Marshall H. and Geider R.J. 2001. A comparison of two N-irradiance interaction models of phytoplankton growth. Limnol. Oceanogr. 46: 1794-1802.

    Google Scholar 

  • Geider R.J., MacIntyre H.L. and Kana T.M. 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43: 679-694.

    Google Scholar 

  • Goericke R. and Montoya J.P. 1998. Estimating the contribution of microalgal taxa to chlorophyll a in the field - variations of pigment ratios under nutrient-and light-limited growth. Mar. Ecol. Progr. Ser. 169: 97-112.

    Google Scholar 

  • Healey F.P. 1985. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J. Phycol. 21: 134-146.

    Google Scholar 

  • Jeffrey S.W. and Humphrey G.F. 1975. New spectroscopic equations for determining Chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191-194.

    Google Scholar 

  • Johnsen G., Nelson N.B., Jovine, R.V.M. and Prezelin, B.B. 1994. Chromoprotein-and pigment-dependent modelling of spectral light absorption in two dinoflagellates, Prorocentrum minimum and Heterocapsa pygmaea. Mar. Ecol. Progr. Ser. 114: 245-258.

    Google Scholar 

  • Kana T.M., Feiwel N.L. and Flynn L.C. 1992. Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling. Mar. Ecol. Prog. Ser. 88: 75-82.

    Google Scholar 

  • MacColl R., Berns D.S. and Gibbons O. 1976. Characterization of cryptomonad phycoerythrin and phycocyanin. Arch. Biochem. Biophys. 177: 265-275.

    Google Scholar 

  • Malara G. and Sciandra A. 1991. A multiparameter phytoplanktonic culture system driven by microcomputer. J. appl. Phycol. 3: 235-241.

    Google Scholar 

  • Morel A. and Bricaud A. 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28A: 1375-1393.

    Google Scholar 

  • Morel A. and Bricaud A. 1986. Inherent optical properties of algal cells including picoplankton: theoretical and experimental results. Can. Bull. Fish. aquat. Sci. 214: 521-559.

    Google Scholar 

  • Pawlowski L., Bernard O., Le Floc'h E. and Sciandra A. (in press) Qualitative behaviour of phytoplankton growth model in photobioreactor. In 15th IFAC World Congress, Barcelona, Spain, July 2002.

  • Rhee G.Y. and Gotham I.J. 1981. The effect of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation. Limnol. Oceanogr. 26: 649-659.

    Google Scholar 

  • Sciandra A., Gostan J., Collos Y., Descolas-Gros C., Leboulanger C., Martin-Jézéquel V., Denis M., Lefèvre D., Copin-Montégut C. and Avril B. 1997. Growth compensating phenomena in continuous cultures of Dunaliella tertiolecta limited simultaneously by light and nitrate. Limnol. Oceanogr. 42: 1325-1339.

    Google Scholar 

  • Sciandra A., Lazzara L., Claustre H. and Babin M. 2000. Responses of the growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Mar. Ecol. Progr. Ser. 201: 107-120.

    Google Scholar 

  • Sciandra A. and Ramani P. 1994. The steady states of continuous cultures with low rates of medium renewal per cell. J. exp. mar. Biol. Ecol. 178: 1-15.

    Google Scholar 

  • Stramski D., Sciandra A. and Claustre H. 2002. Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 47: 392-403.

    Google Scholar 

  • Turpin D.H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27: 14-20.

    Google Scholar 

  • Van de Hulst H.C. 1957. Light Scattering by Small Particles, Wiley, New York, 470 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Floc'h, E., Malara, G. & Sciandra, A. An automatic device for in vivo absorption spectra acquisition and chlorophyll estimation in phytoplankton cultures. Journal of Applied Phycology 14, 435–444 (2002). https://doi.org/10.1023/A:1022338930747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022338930747

Navigation