G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74 (1994), pp. 1117–1143.
Google Scholar
S. R. Billeter and W. F. van Gunsteren, A modular molecular dynamics/quantum dynamics program for non-adiabatic proton transfers in solution, Comp. Phys. Comm., 107 (1997), pp. 61–91.
Google Scholar
F. A. Bornemann, P. Nettesheim, and Ch. Schütte, Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys., 105 (1996), pp. 1074–1083.
Google Scholar
P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin, 1999.
Google Scholar
V. L. Druskin and L. A. Knizhnerman, Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic, Numer. Lin. Alg. Appl., 2 (1995), pp. 205–217.
Google Scholar
B. García-Archilla, J. M. Sanz-Serna, and R. Skeel, Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., 20 (1999), pp. 930–963.
Google Scholar
E. Hairer and Ch. Lubich, The life-span of backward error analysis for numerical integrators, Numer. Math., 76 (1997), pp. 441–462.
Google Scholar
M. Hochbruck and Ch. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.
Google Scholar
M. Hochbruck and Ch. Lubich, A bunch of time integrators for quantum/classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 421–432.
Google Scholar
M. Hochbruck and Ch. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 83 (1999), pp. 403–426.
Google Scholar
M. Hochbruck, Ch. Lubich, and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574.
Google Scholar
A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, Phil. Trans. Royal Soc. A, 357 (1999), pp. 983–1020.
Google Scholar
T. Jahnke, Splittingverfahren für Schrödingergleichungen, Diploma Thesis, Univ. Tübingen, 1999.
R. Kosloff, Propagation methods for quantum molecular dynamics, Annu. Rev. Phys. Chem., 45 (1994), pp. 145–178.
Google Scholar
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Standards, 45 (1950), pp. 255–281.
Google Scholar
W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), pp. 649–673.
Google Scholar
P. Nettesheim, F. A. Bornemann, B. Schmidt, and Ch. Schütte, An explicit and symplectic integrator for quantum-classical molecular dynamics, Chem. Phys. Lett., 256 (1996), pp. 581–588.
Google Scholar
P. Nettesheim and S. Reich, Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 412–420.
Google Scholar
P. Nettesheim and Ch. Schütte, Numerical integrators for quantum-classical molecular dynamics, in J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas, Lecture Notes in Computational Science and Engineering 4, Springer, Berlin [4], 1999, pp. 396–411.
Google Scholar
T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys., 85 (1986), pp. 5870–5876.
Google Scholar
B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
Google Scholar
M. Paule, Integratoren für das QCMD Modell, Diploma Thesis, Univ. Tübingen, 1998.
U. Peskin, R. Kosloff, and N. Moiseyev, The solution of the time dependent Schrödinger equation by the (t, t′) method: The use of global polynomial propagators for time dependent Hamiltonians, J. Chem. Phys., 100 (1994), pp. 8849–8855.
Google Scholar
S. Reich, Dynamical systems, numerical integration, and exponentially small estimates, Habilitation Thesis, FU Berlin, 1998.
S. Reich, Multiple time-scales in classical and quantum-classical molecular dynamics, J. Comp. Phys., 151 (1999), pp. 49–73.
Google Scholar
H. Tal-Ezer and R. Kosloff, An accurate and efficient scheme for propagating the time-dependent Schrödinger equation, J. Chem. Phys., 81 (1984), pp. 3967–3971.
Google Scholar
H. Tal-Ezer, R. Kosloff, and C. Cerjan, Low-order polynomial approximation of propagators for the time-dependent Schrödinger equation, J. Comp. Phys., 100 (1992), pp. 179–187.
Google Scholar
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 19 (1992), pp. 209–228.
Google Scholar