Skip to main content
Log in

A QR Decomposition for Matrix Pencils

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper describes an efficient and numerically stable modification of the QR decomposition for solving a parametric set of linear least squares problems with a parametric matrix A + λB for several values of the parameter λ. The method is demonstrated on a typical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Å. Björck, Numerical Methods for Solving Least Squares Problems, SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  2. R. J. Carroll, D. Ruppert, and L. A. Stefanski, Measurement Error in Nonlinear Models, Chapman & Hall, Boston, MA, 1995.

    Google Scholar 

  3. L. Eldén, Algorithms for regularization of ill-conditioned least squares problems, BIT, 17 (1997), pp. 134–145.

    Google Scholar 

  4. W. A. Fuller, Measurement Error Models, John Wiley, New York, 1987.

    Google Scholar 

  5. P. E. Gill, G. H Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix factorizations, Math. Comp. 28, (1974), pp. 505–535.

    Google Scholar 

  6. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore 1996.

    Google Scholar 

  7. C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10, (1973), pp. 241–256.

    Google Scholar 

  8. J. J. Moré, The Levenberg-Marquardt algorithm, implementation and theory, in Numerical Analysis, Proceedings Biennal Conference Dundee 1977, Lecture Notes on Mathematics, Vol. 630, G. A. Watson ed., Springer-Verlag, Berlin, 1978, pp. 105–116.

    Google Scholar 

  9. L. Reichel and W. B. Gragg, Updating the QR decomposition of a matrix, ACM Trans. Math. Software, 16, (1990), pp. 369–377.

    Google Scholar 

  10. S. Van Huffel and J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, PA, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spellucci, P., Hartmann, W.M. A QR Decomposition for Matrix Pencils. BIT Numerical Mathematics 40, 183–189 (2000). https://doi.org/10.1023/A:1022330705119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022330705119

Navigation