Journal of Chemical Ecology

, Volume 24, Issue 5, pp 905–932 | Cite as

Geographic and Temporal Variation of Cardenolide-Based Chemical Defenses of Queen Butterfly (Danaus gilippus) in Northern Florida

  • Raymond Moranz
  • Lincoln P. Brower
Article

Abstract

The cardenolide-based chemical defenses of danaine butterflies vary macrogeographically. This study demonstrates that these defenses also vary both microgeographically and temporally. We sampled 280 queen butterflies (Danaus gilippus) at 11 sites in northern Florida during the summer of 1993 and determined their cardenolide concentrations and thin-layer chromatography profiles. Queens captured in coastal salt marshes and xeric inland sites were low in cardenolide concentration, while those from hydric inland sites had much higher concentrations. Concentrations also varied temporally, especially at the coastal sites. Thin-layer chromatography analyses of wild-captured queens and those reared on local milkweeds indicated that microgeographic and temporal variation in the cardenolide chemistry of the butterflies is mediated by their host plants. The large differences in cardenolide concentrations among queen populations must result in strong differences in palatability spectra to vertebrate predators. This finding has major implications both for interspecific mimicry and for automimicry.

Danainae Danaus gilippus queen butterfly milkweed Asclepiadaceae cardenolide cardiac glycoside geographic variation temporal variation unpalatability palatability spectrum chemical defense host plant sequestration thin-layer chromatography fingerprinting mimicry automimicry Florida 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abacus Concepts. 1992. Statview. Abacus Concepts, Inc., Berkeley.Google Scholar
  2. Abrahamson, W. G., and Hartnett, D. C. 1990. Pine flatwoods and dry prairies, pp. 103–149, in R. L. Myers and J. J. Ewel (eds.). Ecosystems of Florida. University of Central Florida Press, Orlando.Google Scholar
  3. Adobe Systems. 1994. Adobe Photoshop 3.0, Adobe Systems, Incorporated, Mountain View, California.Google Scholar
  4. Alonso-Mejia, A. 1991. Age effects monarch butterfuly cardiac glycoside content. MS thesis. University of Florida, Gainesville.Google Scholar
  5. Alonso-Mejia, A. 1996. Biology and conservation of over-wintering monarch butterflies in Mexico. PhD thesis. University of Florida, Gainesville.Google Scholar
  6. Alonso-Mejia, A., and Brower, L. P. 1994. From model to mimic: age-dependent unpalatability in monarch butterflies. Experientia 50:176–181.Google Scholar
  7. Bernays, E. A., and Chapman R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman and Hall, New York.Google Scholar
  8. Blum, M. S. 1981. The Chemical Defenses of Arthropods. Academic Press, New York.Google Scholar
  9. Bowers, M. D. 1980. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution 34:586–600.Google Scholar
  10. Bowers, M. D. 1988. Plant allelochemistry and mimicry, pp. 273–311, in P. Barbosa and D. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  11. Bowers, M. D. 1990. Recycling plant natural products for insect defense, pp. 353–375, in D. L. Evans and J. O. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany.Google Scholar
  12. Bowers, M. D., and Williams, E. H. 1995. Variable chemical defence in the checkerspot butterfly Euphydryas gillettii (Lepidoptera: Nymphalidae). Ecol. Entomol. 20:208–212.Google Scholar
  13. Brower, L. P. 1961. Studies on the migration of the monarch butterfly. I. Breeding population of Danaus plexippus and D. gilippus berenice in south central Florida. Ecology 42:76–83.Google Scholar
  14. Brower, L. P. 1962. Evidence for interspecific competition in natural populations of the monarch and queen butterflies, Danaus plexippus and D. gilippus berenice in south central Florida. Ecology 43:549–552.Google Scholar
  15. Brower, L. P. 1984. Chemical defence in butterflies, pp. 109–134, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.Google Scholar
  16. Brower, L. P., and Moffitt, C. M. 1974. Palatability dynamics of cardenolides in the monarch butterfly. Nature 249:280–283.Google Scholar
  17. Brower, L. P., Brower, J. V. Z., and Corvino, J. M. 1967. Plant poisons in a terrestrial food chain. Proc. Nat. Acad. Sci., U.S.A. 57:893–898.Google Scholar
  18. Brower, L. P., Ryerson, W. N., Coppinger, L. L., and Glazier, S. C. 1968. Ecological chemistry and the palatability spectrum. Science 161:1349–1351.Google Scholar
  19. Brower, L. P., Pough, F. H., and Meck, H. R. 1970. Theoretical investigations of automimicry. I. Single trial learning. Proc. Nat. Acad. Sci. U.S.A. 66:1059–1066.Google Scholar
  20. Brower, L. P., Alcock, J., and Brower, J. V. Z. 1971. Avian feeding behavior and the selective advantage of incipient mimicry, pp. 261–274, in R. Creed (ed.). Ecological Genetics and Evolution, Essays in Honour of E. B. Ford. Blackwell Scientific Publications, Oxford.Google Scholar
  21. Brower, L. P., McEvoy, P. B., Williamson, K. L., and Flannery, M. A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America. Science 177:426–429.Google Scholar
  22. Brower, L. P., Edmunds, M., and Moffitt, C. M. 1975. Cardenolide content and palatability of a population of Danaus chrysippus butterflies from West Africa. J. Entomol. (A) 49:183–196.Google Scholar
  23. Brower, L. P., Seiber, J. N., Nelson, C. J., Tuskes, P., and Lynch, S. P. 1982. Plant-determined variation in the cardenolide content, thin layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed Asclepias eriocarpa in California. J. Chem. Ecol. 8:579–633.Google Scholar
  24. Brower, L. P., Seiber, J. N., Nelson, C. J., Lynch, S. P., and Holland, M. M. 1984. Plant-determined variation in the cardenolide content, thin layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus, reared on the milkweed, Asclepias speciosa in California. J. Chem. Ecol. 10:601–639.Google Scholar
  25. Brower, L. P., Nelson, C. J., Seiber, J. N., Fink, L. S., and Bond, C. 1988. Exaptation as an alternative to coevolution in the cardenolide-based chemical defense of monarch butterflies (Danaus plexippus L.) against avian predators, pp. 447–475. in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.Google Scholar
  26. Burns, J. M. 1983. Queen of the Carolinas (Lepidoptera: Nymphalidae: Danainae: Danaus gilippus). Proc. Entomol. Soc. Washington 85:388–396.Google Scholar
  27. Chew, F. S., and Rodman, J. E. 1979. Plant resources for chemical defense, pp. 271–307, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  28. Clewell, A. F. 1985. Guide to the Vascular Plants of the Florida Panhandle. Florida State University Press, Tallahassee.Google Scholar
  29. Cohen, J. A. 1985. Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J. Chem. Ecol. 11:85–103.Google Scholar
  30. Eggenberger, F., and Rowell-Rahier, M. 1991. Chemical defence and genetic variation. Interpopulation study of Oreina gloriosa (Coleoptera: Chrysomelidae). Naturwissenschaften 78:317–320.Google Scholar
  31. Eggenberger, F., Daloze, D., Pasteels, J. M., and Rowell-Rahier, M. 1992. Identification and seasonal quantification of defensive secretion components of Oreina gloriosa (Coleoptera: Chrysomedlidae). Experientia 48:1173–1179.Google Scholar
  32. Ewel, K. 1990. Swamps. Pages 281–323. in R. L. Myers and J. J. Ewel (eds.). Ecosystems of Florida. University of Central Florida Press, Orlando.Google Scholar
  33. Fernald, E. A. 1981. Atlas of Florida. The Florida State University Foundation, Tallahassee.Google Scholar
  34. Fink, L. S., and Brower, L. P. 1981. Birds can overcome the cardenolide defence of monarch butterflies in Mexico. Nature 291:67–70.Google Scholar
  35. Florida Natural Areas Inventory. 1990. Guide to the Natural Communities of Florida. Florida Natural Areas Inventory, Tallahassee.Google Scholar
  36. Guilford, T. 1994. “Go-slow” signalling and the problem of automimicry. J. Theor. Biol. 170:311–316.Google Scholar
  37. Huheey, J. E. 1984. Warning coloration and mimicry, pp. 258–297, in W. T. Bell and R. T. Cardé (eds.). Chemical Ecology of Insects. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  38. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54:187–211.Google Scholar
  39. Judd, W. S., Sanders, R. W., and Donoghue, M. J. 1994. Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Pap. Bot. 5:1–51.Google Scholar
  40. Long, R. W., and Lakela, D. 1971. A Flora of Tropical Florida. University of Miami Press, Coral Gables, Florida.Google Scholar
  41. Malcolm, S. B. 1990. Chemical defence in chewing and sucking insect herbivores: Plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1:12–21.Google Scholar
  42. Malcolm, S. B. 1991. Cardenolide-mediated interactions between plants and herbivores, pp. 251–296, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2E Vol. 1: The Chemical Participants. Academic Press, New York.Google Scholar
  43. Malcolm, S. B., and Brower, L. P. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284–295.Google Scholar
  44. Malcolm, S. B., Cockrell, B. J., and Brower, L. P. 1989. Cardenolide fingerprint of monarch butterflies reared on common milkweed, Asclepias syriaca L. J. Chem. Ecol. 15:819–853.Google Scholar
  45. Marshall, G. A. K., and Poulton, E. B. 1902. Five years' observations and experiments (1896–1901) on the bionomics of South African insects, chiefly directed to the investigation of mimicry and warning colours. Trans. Entomol. Soc. London 1902(III):287–584.Google Scholar
  46. May, P. G. 1992. Flower selection and the dynamics of lipid reserves in two nectarivorous butterflies. Ecology 73:2181–2191.Google Scholar
  47. McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  48. Montague, C. L., and Wiegert, R. G. 1990. Salt marshes, pp. 481–516, in R. L. Myers and J. J. Ewel (eds.). Ecosystems of Florida. University of Central Florida Press, Orlando.Google Scholar
  49. Moranz, R. A. 1996. Geographic and temporal variation of the cardenolide-based chemical defenses of the queen butterfly in relation to host plant cardenolides. MS thesis. University of Florida, Gainesville.Google Scholar
  50. Myers, R. L. 1990. Scrub and high pine, pp. 150–193, in R. L. Myers and J. J. Ewel (eds.). Ecosystems of Florida. University of Central Florida Press, Orlando.Google Scholar
  51. Opler, P. A., and Krizek, G. O. 1984. Butterflies East of the Great Plains. Johns Hopkins University Press, Baltimore.Google Scholar
  52. Pasteels, J. M., Dobler, S., Rowell-Rahier, M., Ehmke, A., and Hartmann, T. 1995. Distribution of autogenous and host-derived chemical defense in Oreina leaf beetles (Coleoptera: Chrysomelidae). J. Chem. Ecol. 21:1163–1179.Google Scholar
  53. Pough, H. F., Brower, L. P., Meck, H. R., and Kessel, S. R. 1973. Theoretical investigations of automimicry: multiple trial learning and the palatability spectrum. Proc. Nat. Acad. Sci. U.S.A. 70:2261–2265.Google Scholar
  54. Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  55. Ritland, D. B. 1991a. Ecological dynamics of viceroy butterfly mimicry in Florida. PhD thesis. University of Florida, Gainesville.Google Scholar
  56. Ritland, D. B. 1991b. Revising a classic butterfly mimicry scenario: demonstration of Müllerian mimicry between Florida viceroys (Limenitis archippus floridensis) and queens (Danaus gilippus berenice). Evolution 45:918–934.Google Scholar
  57. Ritland, D. B. 1994. Variation in palatability of queen butterflies (Danaus gilippus) and implications regarding mimicry. Ecology 75:732–746.Google Scholar
  58. Roeske, C. N., Seiber, J. S., Brower, L. P., and Moffitt, C. M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus). Recent Adv. Phytochem. 10:93–167.Google Scholar
  59. Rothschild, M. 1972. Secondary plant substances and warning colouration in insects, pp. 59–83, in H. F. Van Emden (ed.). Insect/Plant Relationships. Blackwell Scientific Publications, London.Google Scholar
  60. Scott, J. A. 1986. The Butterflies of North America. Stanford University Press, Stanford, California.Google Scholar
  61. Spellman, D. L. and Gunn, C. R. 1976. Morrenia odorata and Araujia sericofera (Asclepiadaceae): Weeds in citrus groves. Castanea 41:139–148.Google Scholar
  62. US Soil Conservation Service. 1980. General Map of Ecological Communities: State of Florida. USDA, Fort Worth, Texas.Google Scholar
  63. Walford, P. 1980. Lipids in the life cycle of the monarch butterfly, Danaus plexippus. Senior honor's thesis. Amherst College. Amherst, Massachusetts.Google Scholar
  64. Whitman, D. W., Blum, M. S., and Alsop, D. W. 1990. Allomones: Chemicals for defense, pp. 289–351, in D. L. Evans and J. O. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany.Google Scholar
  65. Winsberg, M. D. 1990. Florida Weather. University of Central Florida Press, Orlando.Google Scholar
  66. Wunderlin, R. P. 1982. Guide to the Vascular Plants of Central Florida. University Presses of Florida, Tampa.Google Scholar
  67. Zar, J. H. 1974. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Raymond Moranz
    • 1
  • Lincoln P. Brower
    • 2
  1. 1.Department of BiologySweet Briar CollegeSweet Briar
  2. 2.Department of ZoologyUniversity of FloridaGainesville

Personalised recommendations