Skip to main content

The Effects of Specific Respiratory Rates on Heart Rate and Heart Rate Variability

Abstract

In this study respiratory rates of 3, 4, 6, 8, 10, 12, and 14 breaths per minute were employed to investigate the effects of these rates on heart rate variability (HRV). Data were collected 16 times at each respiratory rate on 3 female volunteers, and 12 times on 2 female volunteers. Although mean heart rates did not differ among these respiratory rates, respiratory-induced trough heart rates at 4 and 6 breaths per minute were significantly lower than those at 14 breaths per minute. Slower respiratory rates usually produced higher amplitudes of HRV than did faster respiratory rates. However, the highest amplitudes were at 4 breaths per minute. HRV amplitude decreased at 3 breaths per minute. The results are interpreted as reflecting the possible effects of the slow rate of acetylcholine metabolism and the effect of negative resonance at 3 cycles per minute.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science, 213, 220-222.

    Google Scholar 

  • Angelone, A., & Coulter, N. A. (1964). Respiratory sinus arrhythmia: A frequency dependent phenomenon. Journal of Applied Physiology, 19, 479-484.

    Google Scholar 

  • Anonymous. (1998). Midwifery management of pain in labor. The CNM Data Group, 1996. Journal of Nurse-Midwifery, 43, 77-82.

    Google Scholar 

  • Anrep, G. V., Pascual, W., & Rössler, R. (1936a). Respiratory variations of the heart rate: I. The reflex mechanism of the respiratory arrhythmia. Proceedings of the Royal Society, Series B 119, 191-217.

    Google Scholar 

  • Anrep, G. V., Pascual, W., & Rössler, R. (1936b). Respiratory variations of the heart rate: II. The central mechanism of the sinus arrhythmia and the inter-relationships between central and reflex mechanisms. Proceedings of the Royal Society, Series B 119, 218-230.

    Google Scholar 

  • Bernardi, L., Leuzzi, S., Radaelli, A., Passino, C., Johnston, J. A., & Sleight, P. (1994). Low-frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: A baroreceptor or central phenomenon? Clinical Science, 87, 649-654.

    Google Scholar 

  • Berntson, G. A., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623-648.

    Google Scholar 

  • Brown, T. E., Beightol, L. A., Koh, J., & Eckberg, D. L. (1993). Important influence of respiration on human R-R interval power spectra is largely ignored. Journal of Applied Physiology, 75, 2310-2317.

    Google Scholar 

  • Chernigovskaya, N. V., Vachillo, E. G., Petrash, V. V., & Rusanovskii, V. V. (1991). Voluntary control of the heart rate as a method of correcting the functional state in neurosis. Human physiology, 17, 105-111.

    Google Scholar 

  • Clark, M. E., & Hirschman, R. (1990). Effects of paced respiration on anxiety reduction in a clinical population. Biofeedback and Self Regulation, 15, 273-284.

    Google Scholar 

  • Cooke, W. H., Cox, J. F., Diedrich, A. M., Taylor, A., Beightol, L. A., Ames, J. E., IV, et al. (1998). Controlled breathing protocols probe human autonomic cardiovascular rhythms. American Journal of Physiology, 274 (Heart and Circulatory Physiology, 43), H709-H718.

    Google Scholar 

  • Eckberg, D. L., & Eckberg, M. J. (1982). Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. American Journal of Physiology, 242 (Heart and Circulatory Physiology, 11), H638-H644.

    Google Scholar 

  • Grossman, P. (1983). Respiration, stress, and cardiovascular function. Psychophysiology, 20, 284-300.

    Google Scholar 

  • Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: The need for respiratory control. Psychophysiology, 28, 201-216.

    Google Scholar 

  • Grossman, P., & Svebak, S. (1987). Respiratory sinus arrhythmia as an index of parasympathetic cardiac control during active coping. Psychophysiology, 24, 228-235.

    Google Scholar 

  • Harris, V. A., Katkin, E. S., Lick, J. R., & Habberfield, T. (1976). Paced respiration as a technique for the modification of autonomic response to stress. Psychophysiology, 13, 386-391.

    Google Scholar 

  • Hayano, J., Mukai, S., Sakakibara, M., Okada, A., Takata, K., & Fujinami, T. (1994). Effects of respiratory interval on vagal modulation of heart rate. American Journal of Physiology, 267 (Heart and Circulatory Physiology, 36), H33-H40

    Google Scholar 

  • Hyndman, B. W., Kitney, R. I., & Sayers, B. (1971). Spontaneous rhythms in physiological control systems. Nature, 233(5B18), 339-341.

    Google Scholar 

  • Jennings, J. A., Mcknight, J. D., & Van der Molen, M. (1996). Phase-sensitive interaction of cardiac and respiratory timing in humans. Psychophysiology, 33, 514-521.

    Google Scholar 

  • Jones, G. E., & Evans, P. A. (1980). Treatment of Tietze's syndrome pain through paced respiration. Biofeedback and Self Regulation, 5, 295-303.

    Google Scholar 

  • Kollai, M, & Mizsei, G. (1990). Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. Journal of Physiology, 424, 329-342

    Google Scholar 

  • Lehrer, P. M., Carr, R. E., Smetankine, A., Vaschillo, E., Peper, E., Porges, S., et al. (1997). Respiratory sinus arrhythmia vs. EMG biofeedback therapy for asthma: A pilot study. Applied Psychophysiology and Biofeedback, 22, 95-109.

    Google Scholar 

  • Lehrer, P. M, Sasaki, Y., & Saito, Y. (1999). Zazen and cardiac variability. Psychosomatic Medicine, 61, 812-821.

    Google Scholar 

  • Lehrer, P. M., Smetankin, A., & Potapova, T. (2000). Respiratory sinus arrhythmia biofeedback therapy for asthma: A report of 20 unmedicated pediatric cases using the Smetankin method. Applied Psychophysiology and Biofeedback, 25, 193-200.

    Google Scholar 

  • Lehrer, P. M., Vaschillo, E. & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophyisology and Biofeedback, 25, 177-191

    Google Scholar 

  • McCaul, K. D., Solomon, S., & Holmes, D. S. (1979). Effects of paced respiration and expectations on physiological and psychological responses to threat. Journal of Personality and Social Psychology, 37, 564-571.

    Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, R., Furlan, R., Pizzinelli, P., et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 259, 178-193.

    Google Scholar 

  • Pitzalis, M. V., Mastropasqua, F., Massari, F., Passantino, A., Colombo, R., Mannarini, A., et al. (1998). Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: A frequency-dependent phenomenon. Cardiovascular Research, 38, 332-339.

    Google Scholar 

  • Pomeranz, B., Macaulay, R. J. B., Caudill, M. A., Kutz, I., Adam, D., Gordon, D., et al. (1985). American Journal of Physiology, 248 (Heart and Circulatory Physiology, 17), H151-H153.

    Google Scholar 

  • Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301-318.

    Google Scholar 

  • Raczkowska, M., Eckberg, D. L., & Ebert, T. J. (1983). Muscarinic cholinergic receptors modulate vagal cardiac responses in man. Journal of the Autonomic Nervous System, 7, 271-278.

    Google Scholar 

  • Ritz, T., Thons, M., & Dahme, B. (2001). Modulation of respiratory sinus arrhythmia by respiration rate and volume: Stability across posture and volume variations. Psychophysiology, 38, 858-862.

    Google Scholar 

  • Sakakibara, M., & Hayano, J. (1996). Effect of slowed respiration on cardiac parasympathetic response to threat. Psychosomatic Medicine, 58, 32-37.

    Google Scholar 

  • Salkovskis, P. M., Jones, D. R., & Clark, D. M. (1986). Respiratory control in the treatment of panic attacks: Replication and extension with concurrent measurement of behaviour and pCO2. British Journal of Psychiatry, 148, 526-532.

    Google Scholar 

  • Sloan, R. P., Shapiro, P. A., Bagiella, E., Bigger, J. T. Jr., Lo, E. S. & Gorman, J. M. (1996). Relationships between circulating catecholamines and low frequency heart period variability as indices of cardiac sympathetic activity during mental stress. Psychosomatic Medicine, 58, 25-31.

    Google Scholar 

  • Stark, R., Schienle, A., Walter, B., & Vaitl, D. (2000). Effects of paced respiration on heart period and heart period variability. Psychophysiology, 37, 302-309.

    Google Scholar 

  • Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27, 1-27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Lehrer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, HS., Lehrer, P.M. The Effects of Specific Respiratory Rates on Heart Rate and Heart Rate Variability. Appl Psychophysiol Biofeedback 28, 13–23 (2003). https://doi.org/10.1023/A:1022312815649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022312815649

  • respiratory sinus arrhythmia
  • paced breathing
  • resonance
  • baroreflex