Skip to main content
Log in

Foam Mobility in Heterogeneous Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Foamed-gas injection is a promising technique for achieving mobility control and diverting fluid to low permeability strata within heterogeneous porous media. However, the factors most important for diversion have not been stated and explored definitively. Gas mobility in the presence of foam depends critically on foam-bubble size; bubble size may vary with permeability, porosity, surfactant type and concentration, and the velocity of liquid and gas. This paper adopts a local equilibrium, scaling perspective to describe quantitatively foamed-gas mobility within heterogeneous porous media. Conventional and percolation network scaling ideas are employed. A new closed form expression for the fraction of mobile gas within a foam is derived using statistical network concepts. Additional equations indicate, for instance, that porosity plays an important role in setting gas mobility because it reflects the relative abundance of foam germination and termination sites per unit volume of porous media. Liquid velocity is also important because gas mobility is inversely proportional to this factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apaydin, O. G. and Kovscek, A. R.: 2001, Surfactant concentration and capillary end effects on transient foam flow porous media, Transport in Porous Media 43(3), 511–536.

    Google Scholar 

  • Aronson, A. S., Bergeron, V., Fagan, M. and Radke, C. J.: 1994, The influence of disjoining pressure on foam stability and flow in porous media, Coll. Surfaces A: Physicochem. Eng. Aspects 83, 109–120.

    Google Scholar 

  • Bertin, H. J., Quintard, M. Y. and Castanier, L. M.: 1998, Modeling transient foam flow in porous media using a bubble population correlation, Soc. Petrol. Eng. J. 3(4), 356–362.

    Google Scholar 

  • Bertin, H. J., Apaydin O. G., Castanier, L. M. and Kovscek, A. R.: 1999, Foam flow in heterogeneous porous media, Soc. Petrol. Eng. J. 4(2), 75–82.

    Google Scholar 

  • Bretherton, F. P.: 1961, The motion of long bubbles in tubes, J. Fluid Mech. 10, 166–188.

    Google Scholar 

  • Casteel, J. F. and Djabbarah, N. F.: 1988, Soc. Petrol. Eng. Reservoir Eng. 3, 1186–1192.

    Google Scholar 

  • Chambers, K. T. and Radke, C. J.: 1991, Capillary phenomena in foam flow through porous media, In: N. R. Morrow (ed.), Interfacial Phenomena in Petroleum Recovery, Marcel Dekker, NY, pp. 191–255.

    Google Scholar 

  • Cheng, L., Kam, S. I., Delshad, M. and Rossen, W. R.: 2001, Simulation of dynamic foam-acid diversion process, In: Proceedings of the SPE European Formation Damage Conference, The Hauge, Netherlands, SPE 68916.

    Google Scholar 

  • Cohen, D., Patzek, T. W. and Radke, C. J.: 1997, Onset of mobilization and the fraction of trapped foam in porous media, Transport in Porous Media 28, 253–284.

    Google Scholar 

  • Corey, A. T.: 1954, The interrelation between gas and oil relative permeabilities, Producer's Monthly 19, 38–41.

    Google Scholar 

  • de Gennes, P. G.: 1992, Conjectures on foam mobilization, Revue De L'Institut Francais Du Pétrole 47(2), 249–254.

    Google Scholar 

  • Ettinger, R. E. and Radke, C. J.: 1992, Influence of foam texture on steady foam flow in Berea sandstone, Soc. Petrol. Eng. Reservoir Eng. 7, 83–90.

    Google Scholar 

  • Falls, A. H., Hirasaki, G. J., Patzek, T. W., Gauglitz, P. A., Miller, D. D. and Ratulowski, T: 1988, Development of a mechanistic foam simulator: the population balance and generation by snapoff, Soc. Petrol. Eng. Reservoir Eng. 3, 884–892.

    Google Scholar 

  • Fergui, O., Bertin, H. and Quintard, M. Y: 1998, Transient aqueous foam flow in porous media: experiments and modeling, J. Petrol. Sci. Eng. 20, 9–29.

    Google Scholar 

  • Friedmann, F., Chen, W. H. and Gauglitz, P. A.: 1991, Experimental and simulation study of hightemperature foam in porous media, Soc. Petrol. Eng. Reservoir Eng. 6, 37–45.

    Google Scholar 

  • Gillis, J. V. and Radke, C. J.: 1990, A dual gas tracer technique of determining trapped gas saturation during steady foam flow in porous media, in: Proceedings of the 65th SPE Annual Technical Conference, New Orleans, LA, U.S.A., SPE 20519.

    Google Scholar 

  • Hanssen, J. E.: 1993, Foam as a gas blocking agent in petroleum reservoirs II: mechanisms of gas blockage by foam, J. Petrol. Sci. Eng. 10, 117–133.

    Google Scholar 

  • Heller, J. P.: 1994, CO2 foams in enhanced oil recovery, in: L. L. Schramm (ed.), Foams in the Petroleum Industry, American Chemical Society, Washington, DC, pp. 201–234.

    Google Scholar 

  • Hirasaki, G. J.: 1989a, The steam foam process, J. Petrol. Technol. 41(5), 449–456.

    Google Scholar 

  • Hirasaki, G. J.: 1989b, The Steam Foam Process, Supplement to SPE 19505, Society of Petroleum Engineers, Richardson, TX.

    Google Scholar 

  • Hirasaki, G. J. and Lawson, J. B.: 1985, Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries, Soc. Petrol. Eng. J. 25(2), 176–190.

    Google Scholar 

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B. and Akiya, N.: 1997a, Surfactant/foam process for aquifer remediation, In: Proceedings of the SPE Annual Technical Conference, San Antonio, TX, U.S.A., SPE 39292.

    Google Scholar 

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., Tanzil, D., Jackson, R. E., Londergan, J. and Mainardus, H.: 1997b, Field demonstration of the surfactant/foam process for aquifer remediation, in: Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, U.S.A., SPE 39292.

    Google Scholar 

  • Jiménez, A. I. and Radke, C. J.: 1989, Dynamic stability of foam lamellae flowing through a periodically constricted pore, in: J. K. Borchardt and T. F. Yen (eds), Oil Field Chemistry: Enhanced Recovery and Production Stimulation, American Chemical Society, Washington, DC, pp. 460–469.

    Google Scholar 

  • Kharabaf, H. and Yortsos, Y. C.: 1998, Pore network model for foam formation and propagation in porous media, Soc. Petrol. Eng. J. 13(1), 42–53.

    Google Scholar 

  • Khatib, Z. I., Hirasaki, G. J. and Falls, A. H.: 1988, Effects of capillary pressure on coalescence and phase mobility in foams flowing in porous media, Soc. Petrol. Eng. Reservoir Eng. 3, 919–926.

    Google Scholar 

  • Kibodeaux, K., Zeilinger, S. C. and Rossen, W. R.: 1994, Improved prediction of foam diversion in matrix acidization, In: Proceedings of the 69th SPE Annual Technical Conference, New Orleans, LA, U.S.A., SPE 28550.

    Google Scholar 

  • Kovscek, A. R. and Bertin, H. J.: 2003, Foam mobility in heterogeneous porous media II: experimental observations, Transport in Porous Media 52, 37–49.

    Google Scholar 

  • Kovscek, A. R. and Radke, C. J.: 1994, Fundamentals of foam transport in porous media, In: L. L. Schramm (ed.), Foams in the Petroleum Industry, American Chemical Society, Washington, DC, pp. 115–163.

    Google Scholar 

  • Kovscek, A. R. and Radke, C. J.: 1996, Gas bubble snap-off under pressure driven flow in unconstricted noncircular capillaries, Colloids Surf. A 117, 55–76.

    Google Scholar 

  • Kovscek, A. R., Patzek, T. W. and Radke, C. J.: 1995, A mechanistic population balance model for transient and steady state foam flow in Boise sandstone, Chem. Eng. Sci. 50(23), 3783–3799.

    Google Scholar 

  • Kovscek, A. R., Patzek, T.W. and Radke, C. J.: 1997, Mechanistic foam simulation in heterogeneous and multidimensional porous media, Soc. Petrol. Eng. J. 2, 511–526.

    Google Scholar 

  • Laidlaw, W. G., Wilson, W. G. and Coombe, D. A.: 1993, A lattice model of foam flow in porous media: a percolation approach, Transport in Porous Media 11, 139–159.

    Google Scholar 

  • Llave, F. M., Chung, F. T.-H., Louvier, R. W. and Hudgins, D. A., 1990, Foams as mobility control agents for oil recovery by gas displacement, In: Proceeding of the 7th SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa, OK, U.S.A., SPE 20245.

    Google Scholar 

  • Myers, T. J. and Radke, C. J.: 2000, Transient foam displacement in the presence of residual oil: experiment and simulation using a population balance model, Ind. Eng. Chem. Res. 39, 2725–2741.

    Google Scholar 

  • Panda, M. N. and Lake, L. W.: 1994, Estimation of single-phase permeability from parameters of particle-size distribution, Am. Assoc. Petrol. Geol. Bull. 79(3), 431–443.

    Google Scholar 

  • Panda, M. N. and Lake, L.W.: 1995, A physical model of cementation and its effects on single-phase permeability, Am. Assoc. Petrol. Geol. Bull. 78(7), 1028–1039.

    Google Scholar 

  • Patzek, T. W.: 1988, Description of foam flow in porous media by the population balance approach, In: D. H. Smith (ed.), Surfactant-Based Mobility Control: Progress in Miscible-Flood Enhanced Oil Recovery, American Chemical Society, Washington, DC, pp. 326–341.

    Google Scholar 

  • Persoff, P., Radke, C. J., Pruess, K., Benson, S. M. and Witherspoon, P. A.: 1991, A laboratory investigation of foam flow in porous media at elevation pressure, Soc. Petrol. Eng. Reservoir Eng. 6, 365–371.

    Google Scholar 

  • Robin, M.: 1987, Laboratory evaluation of foaming additives used to improve steam efficiency, In: Proceedings of the 62nd SPE Annual Technical Conference, Dallas, TX, U.S.A., SPE 16729.

    Google Scholar 

  • Rossen, W. R.: 1988, Theories of foam mobilization pressure gradient, In: Proceeding of the 6th SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa, OK, U.S.A., SPE 17358.

    Google Scholar 

  • Rossen, W. R. and Gauglitz, P. A.: 1990, Percolation theory of creation and mobilization of foams in porous media, Am. Inst. Chem. Eng. J. 36(8), 1176–1188.

    Google Scholar 

  • Rossen, W. R. and Zhou, Z. H.: 1996, Modeling foam mobility at the limiting capillary pressure, Soc. Petrol. Eng. Adv. Technol. Ser. 3(1), 146–153.

    Google Scholar 

  • Stauffer, D.: 1985, Introduction to Percolation Theory, Taylor & Francis, London.

    Google Scholar 

  • Tanzil, D., Hirasaki, G. J. and Miller, C. A.: 2002, Mobility of foam in heterogeneous porous media: flow parallel and perpendicular to stratification, Soc. Petrol. Eng. J. 7, 203–212.

    Google Scholar 

  • Wong, H., Radke, C. J. and Morris, S.: 1995a, The motion of long bubbles in polygonal capillaries. Part 1: thin films, J. Fluid Mech. 292, 71–94.

    Google Scholar 

  • Wong, H., Radke, C. J. and Morris, S.: 1995b, The motion of long bubbles in polygonal capillaries.Part 2: drag fluid pressure and fluid flow, J. Fluid Mech. 292, 95–110.

    Google Scholar 

  • Yaghoobi, H. and Heller, J. P.: 1996, Effect of capillary contact on CO2-foam mobility in heterogeneous core samples, In: Proceedings of the Permian Basin Oil and Gas Recovery Conference, Midland, TX, U.S.A., SPE 35169.

    Google Scholar 

  • Zehrboub, M., Ben-Naceur, K., Toubol, E. and Thomas, R.: 1994, Matrix acidizing: a novel approach to foam diversion, Soc. Petrol. Eng. Prod. Facilities, 121–126.

  • Zeilinger, S. C., Wang, M., Kibodeaux, K. and Rossen, W. R.: 1995, Improved prediction of foam diversion in matrix acidization, In: Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, U.S.A., SPE 29529.

    Google Scholar 

  • Zhou, Z. H. and Rossen, W. R.: 1992, Applying fractional-flow theory to foams for diversion in matrix acidization, in: Proceedings of the 67th Annual SPE Technical Conference and Exhibition, Washington, DC, U.S.A., SPE 24660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kovscek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovscek, A.R., Bertin, H.J. Foam Mobility in Heterogeneous Porous Media. Transport in Porous Media 52, 17–35 (2003). https://doi.org/10.1023/A:1022312225868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022312225868

Navigation