Skip to main content
Log in

Improved High Order Integrators Based on the Magnus Expansion

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We build high order efficient numerical integration methods for solving the linear differential equation \(\dot X\) = A(t)X based on the Magnus expansion. These methods preserve qualitative geometric properties of the exact solution and involve the use of single integrals and fewer commutators than previously published schemes. Sixth- and eighth-order numerical algorithms with automatic step size control are constructed explicitly. The analysis is carried out by using the theory of free Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  2. S. Blanes, F. Casas, J. A. Oteo, and J. Ros, Magnus and Fer expansions for matrix differential equations: the convergence problem, J. Phys. A: Math. Gen., 31(1998), pp. 259–268.

    Google Scholar 

  3. S. Blanes, Estudio de la evoluci´on de sistemas din´amicos cl´asicos y cu´anticos utilizando m´etodos algebraicos, Ph.D. thesis, Universitat de Val`encia, 1998.

  4. S. Blanes, F. Casas, and J. Ros, High order integration algorithms based on Magnus expansion, preprint (1998).

  5. S. Blanes and P. C. Moan, Splitting methods for the time-dependent Schrüdinger equation, Phys. Lett. A, 265(2000), pp. 35–42.

    Google Scholar 

  6. P. J. Channell and F. R. Neri, An introduction to symplectic integrators, in Integration Algorithms and Classical Mechanics, J. E. Marsden, G. W. Patrick, and W. F. Shadwick, eds., American Mathematical Society, Providence, RI, 1996, pp. 45–58.

  7. E. Celledoni and A. Iserles, Approximating the exponential from a Lie algebra to a Lie group, DAMTP Tech. Report 1998/NA3, University of Cambridge, 1998.

  8. L. Dieci, R. D. Russell, and E. S. Van Vleck, Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Numer. Anal., 31(1994), pp. 261–281.

    Google Scholar 

  9. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins University Press, Baltimore, MD, 1989.

    Google Scholar 

  10. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1993.

    Google Scholar 

  11. R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed., Dover, New York, 1986.

    Google Scholar 

  12. A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, Philos. Trans. Royal Soc. A, 357(1999), pp. 983–1019.

    Google Scholar 

  13. A. Iserles, A. Marthinsen, and S. P. Nørsett, On the implementation of the method of Magnus series for linear differential equations, BIT, 39(1999), pp. 281–304.

    Google Scholar 

  14. A. Iserles, S. P. Nørsett, and A. F. Rasmussen, Time-symmetry and high-order Magnus methods, DAMTP Tech. Report 1998/NA06, University of Cambridge, 1998.

  15. S. Klarsfeld and J. A. Oteo, Recursive generation of higher-order terms in the Magnus expansion, Phys. Rev. A, 39(1989), pp. 3270–3273.

    Google Scholar 

  16. W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7(1954), pp. 649–673.

    Google Scholar 

  17. K. F. Milfeld and R. E. Wyatt, Study, extension and application of Floquet theory for quantum molecular systems in an oscillating field, Phys. Rev. A, 27(1983), pp. 72–94.

    Google Scholar 

  18. P. C. Moan, Efficient approximation of Sturm–Liouville problems using Lie-group methods, DAMTP Tech. Report 1998/NA11, University of Cambridge, 1998.

  19. C. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20(1978), pp. 801–836.

    Google Scholar 

  20. H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Philos. Trans. Royal Soc. A, 357(1999), pp. 957–981.

    Google Scholar 

  21. P. Pechukas and J. C. Light, On the exponential form of time-displacement operators in quantum mechanics, J. Chem. Phys., 44(1966), pp. 3897–3912.

    Google Scholar 

  22. D. Prato and P. W. Lamberti, A note on Magnus formula, J. Chem. Phys., 106 (1997), pp. 4640–4643.

    Google Scholar 

  23. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

    Google Scholar 

  24. R. M. Wilcox, Exponential operators and parameter differentiation in quantum physics, J. Math. Phys., 8(1967), pp. 962–982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanes, S., Casas, F. & Ros, J. Improved High Order Integrators Based on the Magnus Expansion. BIT Numerical Mathematics 40, 434–450 (2000). https://doi.org/10.1023/A:1022311628317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022311628317

Navigation