Skip to main content
Log in

Water Transport by Nanodispersion Droplets in a Water-in-Oil Emulsion

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The mechanisms of water transport through an organic dispersion medium are considered for an emulsion during Ostwald ripening and for a three-phase system upon a contact of a water-in-oil emulsion with an external aqueous phase. Electron microscopy shows a formation of nanodispersion droplets during the diffusion of water through the organic phase of water-in-oil emulsions. The experimental water diffusion coefficient during Ostwald ripening in emulsions is 40 times smaller than the calculated molecular diffusion coefficient. The experimental diffusion coefficients are determined for rhodamine C, which solubilizes in the surfactant micelles, and for ethyl alcohol, a cosurfactant, which reduces the interfacial tension in the emulsion and promotes the formation of nanodispersion droplets. The experimental diffusion coefficients of rhodamine C and ethanol are three orders of magnitude smaller than the calculated values. The ratio between the numbers of rhodamine C and water molecules diffusing through the organic phase is 1 : 10 000. The nanodispersion droplets are shown to make the main contribution to the water transport in the organic dispersion medium of the emulsions. Water can also be transported by single surfactant molecules, but this mechanism is not the predominant one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Taylor, P., Adv. Colloid Interface Sci., 1998, vol. 75, no. 2, p. 107.

    Google Scholar 

  2. Kahlweit, M., Adv. Colloid Interface Sci., 1975, vol. 5, no. 1, p. 1.

    Google Scholar 

  3. Davis, S.S., Round, H.P., and Purewal, T.S., J. Colloid Interface Sci., 1981, vol. 80, no. 2, p. 508.

    Google Scholar 

  4. Kabal'nov, A.S., Pertsov, A.V., and Shchukin, E.D., Kolloidn. Zh., 1984, vol. 46, no. 6, p. 1108.

    Google Scholar 

  5. Kabalnov, A.S., Pertzov, A.V., and Shchukin, E.D., J. Colloid Interface Sci., 1987, vol. 118, no. 2, p. 590.

    Google Scholar 

  6. Soma, J. and Papadopoulos, K.D., J. Colloid Interface Sci., 1996, vol. 181, no. 1, p. 225.

    Google Scholar 

  7. Kabalnov, A.S., Langmuir, 1994, vol. 10, no. 3, p. 680.

    Google Scholar 

  8. De Smet, Y., Deriemaeker, L., and Finsy, R., Langmuir, 1999, vol. 15, no. 20, p. 6745.

    Google Scholar 

  9. Weiss, J., Herrmann, N., and McClements, D.J., Langmuir, 1999, vol. 15, no. 20, p. 6652.

    Google Scholar 

  10. McClements, D.J. and Dungan, S.R., J. Phys. Chem., 1993, vol. 97, no. 28, p. 7304.

    Google Scholar 

  11. Binks, B.P., Clint, J.H., Fletcher, P.D.I., and Rippon, S., Langmuir, 1999, vol. 15, no. 13, p. 4495.

    Google Scholar 

  12. Taylor, P. and Ottewill, R.H., Colloids Surfaces, 1994, vol. 88, nos. 2-3, p. 303.

    Google Scholar 

  13. Wen, L. and Papadopoulos, K.D., J. Colloid Interface Sci., 2001, vol. 235, no. 2, p. 398.

    Google Scholar 

  14. Colinart, P., Delepine, S., Trouve, G., and Renon, H., J. Membr. Sci., 1984, vol. 20, no. 2, p. 167.

    Google Scholar 

  15. Tsuboi, K., Akita, S., Takahashi, T., and Takeuchi, H., Kagaku Kogaku Rombunshu, 1987, vol. 13, no. 1, p. 110.

    Google Scholar 

  16. Princen, H.M., Langmuir, 1986, vol. 2, no. 4, p. 519.

    Google Scholar 

  17. Yurtov, E.V. and Koroleva, M.Yu., Usp. Khim., 1991, vol. 60, no. 11, p. 2422.

    Google Scholar 

  18. Enomoto, Y., Tokuyama, M., and Kawasaki, K., Acta Metall., 1986, vol. 34, no. 11, p. 2119.

    Google Scholar 

  19. Tsuboi, K., Akita, S., Takahashi, K., and Takeuchi, M., Kagaku Kogaku Rombunshu, 1987, vol. 13, no. 1, p. 110.

    Google Scholar 

  20. Yurtov, E.V. and Koroleva, M.Yu., Kolloidn. Zh., 1991, vol. 53, no. 1, p. 86.

    Google Scholar 

  21. Wilke, C.R. and Chang, P., AIChE J., 1955, vol. 1, p. 264.

    Google Scholar 

  22. Eicke, H.-F., Interfacial Phenomena in Apolar Media, Eicke, H.-F. and Parfitt, G.D., Eds., New York: Dekker, 1987, p. 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroleva, M.Y., Yurtov, E.V. Water Transport by Nanodispersion Droplets in a Water-in-Oil Emulsion. Colloid Journal 65, 35–39 (2003). https://doi.org/10.1023/A:1022310823060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022310823060

Keywords

Navigation