Skip to main content
Log in

Permutation Methods for Determining the Significance of Spatial Dependence

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

A class of multivariate nonparametric tests for spatial dependence, Multivariate Sequential Permutation Analyses (MSPA), is developed and applied to the analysis of spatial data. These tests allow the significance level (P value) of the spatial correlation to be computed for each lag class. MSPA is shown to be related to the variogram and other measures of spatial correlation. The interrelationships of these measures of spatial dependence are discussed and the measures are applied to synthetic and real data. The resulting plot of significance level vs. lag spacing, or P-gram, provides insight into the modeling of the semivariogram and the semimADogram. Although the test clearly rejects some models of correlation, the chief value of the test is to quantify the strength of spatial correlation, and to provide evidence that spatial correlation exists

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ali, M. M., 1984, An approximation to the Null distribution and power of the Durbin-Watson statistic: Biometrika, v. 71,no. 2, p. 253–261.

    Google Scholar 

  • Baczkowski, A. J., and Mardia, K. V., 1987, Approximate lognormality of the sample semi-variogram under a Gaussian process: Commun. Statist. Simul., v. 16,no. 2, p. 571–585.

    Google Scholar 

  • Berry, K. J., and Mielke, P. W., Jr., 1983, Computation of finite population parameters and approximate probability values for multi-response permutation procedures (MRPP): Commun. Statist. Simul., v. 12,no. 1, p. 83–107.

    Google Scholar 

  • Cressie, N. A. C., 1991, Statistics for spatial data: John Wiley & Sons, New York, 900 p.

    Google Scholar 

  • Davis, B. M., 1987, Uses and abuses of cross-validation in geostatistics: Math. Geology, v. 19,no. 3, p. 241–248.

    Google Scholar 

  • Davis, B. M., and Borgman, L. E., 1982, A note on the asymptotic distribution of the sample variogram: Math. Geology, v. 14,no. 2, p. 189–193.

    Google Scholar 

  • Dowd, P. A., 1984, The variogram and kriging: robust and resistant estimators, in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel Publ., Dordrecht, v. 1, p. 91–106.

    Google Scholar 

  • Durbin, J., and Watson, G. S., 1950, Testing for serial correlation in least squares regression I: Biometrika, v. 37,no. 3, p. 409–428.

    Google Scholar 

  • Gotway, C. A., and Hergert, G. W., in press, Incorporating spatial trends and anisotropy in geostatistical mapping of soil properties: Am. Jour. Soil Sci.

  • Huber, P. J., 1972, Robust statistics: a review: Ann. Math. Stat., v. 43,no. 4, p. 1041–1067.

    Google Scholar 

  • Issaks, E. H., and Srivastava, R. M., 1989, Applied geostatistics: Oxford Univ. Press, New York, 561 p.

    Google Scholar 

  • Journel, A. G., 1988, New distance measures: the route toward truly non-gaussian geostatistics: Math. Geology, v. 20,no. 4, p. 459–475.

    Google Scholar 

  • Mielke, P. W., 1991, The application of multivariate permutation methods based on distance functions in the earth sciences: Earth Sci. Rev. v. 31,no. 1, p. 55–71.

    Google Scholar 

  • Mielke, P. W., Jr., Berry, K. J., and Johnson, E. S., 1976, Multi-response permutation procedures for a priori classifications: Commun. Statist. Theory Methods, v. 5, p. 1409–1424.

    Google Scholar 

  • Orlowski, L. A., Grundy, W. D., Mielke, P. W., Jr., and Schumm, S. A. 1993, Geological applications of multi-response permutation procedures: Math. Geology, v. 25,no. 4, p. 483–500.

    Google Scholar 

  • Shafer, J. M., and Varljen, M. D., 1990, Approximation of confidence limits on sample semivariograms from single realizations of spatially correlated random fields: Water Resources Res., v. 26,no. 8, p. 1787–1802.

    Google Scholar 

  • Solow, A. R., 1990, Geostatistical cross-validation: A cautionary note: Math. Geology, v. 22,no. 6, p. 637–639.

    Google Scholar 

  • Stein, M. L., and Handcock, M. S. 1989, Some asymptotic properties of kriging when the covariance function is misspecified: Math. Geology, v. 21,no. 2, p. 171–190.

    Google Scholar 

  • Switzer, P., 1984, Inference for spatial autocorrelation functions, in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel Publ., Dordrecht, pt. 1, p. 127–140.

    Google Scholar 

  • Vinod, H. D., 1973, Generalization of the Durbin-Watson statistic for higher order autoregressive processes: Commun. Statistics, v. 2,no. 2, p. 115–144.

    Google Scholar 

  • Zimmerman, D. A., and Wilson, J. L., 1990, Description of and user's manual for TUBA: a computer code for generating two-dimensional random fields via the turning bands method: SeaSoft, Albuquerque, 116 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D.D., Loftis, J.C. & Mielke, Jr., P.W. Permutation Methods for Determining the Significance of Spatial Dependence. Mathematical Geology 29, 1011–1024 (1997). https://doi.org/10.1023/A:1022309619605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022309619605

Navigation